In the adjoining figure, if x/2=y/3=z/5, then calculate the vales of x, y, z.
Answers
Answered by
3
x/3 = y/4 = z/5
A,B ,C and D forms a cyclic quadrilateral.
∠ABC + ∠CDA = 180°_____1
( Also, ∠CDQ + ∠CDA = 180°________2
From (1) and (i2)
∠ABC = ∠CDQ
Also, ∠PCB = x(Vertically opp angles)
In △ CDQ, x + y + ∠CDQ = 180°
⇒ x + z + ∠ABC = 180°
⇒ x + z + (180° − ∠PBC) = 180
⇒ x + z = ∠PBC
⇒ x + z = (180° − x − y)
⇒ 2x + y + z = 180°
⇒ 2x + + = 180° 4x/3 + 5x/3
⇒ 6x+4x+5x/3 = 180° 6x+4x+5x 3
⇒ 5x = 180°
⇒ x = 36°
y = 4x/3 = 48°
z = 5x/3 = 60°
A,B ,C and D forms a cyclic quadrilateral.
∠ABC + ∠CDA = 180°_____1
( Also, ∠CDQ + ∠CDA = 180°________2
From (1) and (i2)
∠ABC = ∠CDQ
Also, ∠PCB = x(Vertically opp angles)
In △ CDQ, x + y + ∠CDQ = 180°
⇒ x + z + ∠ABC = 180°
⇒ x + z + (180° − ∠PBC) = 180
⇒ x + z = ∠PBC
⇒ x + z = (180° − x − y)
⇒ 2x + y + z = 180°
⇒ 2x + + = 180° 4x/3 + 5x/3
⇒ 6x+4x+5x/3 = 180° 6x+4x+5x 3
⇒ 5x = 180°
⇒ x = 36°
y = 4x/3 = 48°
z = 5x/3 = 60°
Similar questions