Math, asked by premanshudutta27, 6 months ago

In the adjoining figure, OD is perpendicular to
the chord AB of a circle with centre O. If BC is a
diameter, show that ACIDO and AC = 2XOD.​

Answers

Answered by MysticSohamS
1

Answer:

your proof is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove :  \\ 1. \: AC \:  || \:  DO \\ 2.AC = 2 \times DO \\  \\ so \: here \\ since \: OD \: ⊥ \: AB \:  \\ ∠BDO = 90 \:  \:  \:  \: (1) \\  \\ moreover \: since \: here \\ BC \: is \: a \: diameter \\ we \: know \: that \\ diameter \: always \: subtends \: a \\  \: righ t\: angle \: at \: any \: point \: on \: the \: circle \\ therefore \: then \\ ∠BAC = 90 \:  \:  \:  \:  \:  \: (2) \\  \\ so \: from \: (1) \: and \: (2) \\ we \: conclude \: that \\  ∠BAC = ∠BDO \\  \\ so \: by \: test \: for \: parallel \: lines \\ we \: can \: say \: that \\ AC \:  ||  \: DO  \:  \:  \:  \:  \: (3)\\

now \: considering \:  \\ △BAC \: and \:  △BDO \\ ∠CBA = ∠DBO \:  \:  \:  \:  \:  \: (common \: angle \: ) \\ ∠BAC = ∠BDO \:  \:  \:  \:  \:  \:  \:  \: (from \: (3)) \\ henceforth \\ △BAC \: is \: similar \: to \: △BDO \\ by \: AA \: test \: of \: similarity \\  \\ so \: now \\ by \: definition \: of \:  \: c.a.s.t \\ we \: obtain \\  \\  \frac{OB}{BC}  =  \frac{OD}{AC}   \\  \\  since \: BC \: is \: a \: diameter \\ and \: OB \: one \: of \: the \: radius \\ we \: have \\ d = 2r \\ BC = 2 \times OB \:  \:  \:  \:  \: (4) \\  \\ now \: then \\  \\  \frac{OB}{2.OB}  =  \frac{OD}{AC}   \:  \:  \:  \:  \:  \: from \: (4)\\  \\  \frac{OD}{AC}  =  \frac{1}{2}  \\  \\ AC = 2.OD \\ thus \: proved

Attachments:
Similar questions