Math, asked by seeddemocracy9186, 1 year ago

In the adjoining figure triangle ABC is right angled at B if angle A=30 degree and AB = 9cm then find BC , AC

Answers

Answered by chanchal296
18

hope it will help

mark me as brainliest

Attachments:
Answered by rani01654
14

BC = 3\sqrt{3}\ cm

AC =  6 \sqrt{3} \ cm

Step-by-step explanation:

Given:- In \triangle ABC,

\angle A= 30\ degree, AB = 9 cm.

To find:- BC and AC.

Solution:- In \triangle ABC,

tan\theta=\frac{opposite}{adjacent}

tan30=\frac{BC}{9}    --------------------(given)

\frac{1}{\sqrt{3} }=\frac{BC}{9}

BC=\frac{9}{\sqrt{3} }

BC=\frac{\sqrt{3}\times\sqrt{3}\times3  }{\sqrt{3} }    -------------(∵9=\sqrt{3}\times \sqrt{3}\times\ 3)

\therefore BC= 3\sqrt{3}\  cm    -----------(equation 1)

Now,

cos\theta=\frac{adjacent}{hypotenuse}

cos30=\frac{AB}{AC}     ------------------(given \theta =30\ degree)

\frac{\sqrt{3} }{2} =\frac{9}{AC}         -----------------(cos 30=\frac{\sqrt{3} }{2}  and AB=9 cm)

AC=\frac{9\times 2}{\sqrt{3} }

\therefore AC = \frac{\sqrt{3}\times \sqrt{3} \times 3\times 2 }{\sqrt{3} }    ----------(∵9=\sqrt{3}\times \sqrt{3}\times\ 3)

\therefore AC =6\sqrt{3}\ cm

Attachments:
Similar questions