Math, asked by mohammadshihas, 1 month ago

In the adjoining figure X=60o Y=58o . If YO and ZO are bisectors of XYZ and XZY respectively of ∆XYZ, find OZY and YOZ.

Answers

Answered by sethrollins13
160

Given :

  • ∠X = 60°
  • ∠Y = 58°

To Find :

  • ∠OZY and ∠YOZ .

Solution :

\longmapsto\tt{\angle{X}+\angle{Y}+\angle{Z}=180^{\circ}\:(A.S.P)}

\longmapsto\tt{\angle{60^{\circ}}+\angle{58^{\circ}}+\angle{Z}=180^{\circ}}

\longmapsto\tt{118^{\circ}+\angle{Z}=180^{\circ}}

\longmapsto\tt{\angle{Z}=180^{\circ}-118^{\circ}}

\longmapsto\tt\bf{\angle{Z}=62^{\circ}}

Now ,

\longmapsto\tt{\angle{OYZ}=\dfrac{58}{2}=29^{\circ}}

Similarly ,

\longmapsto\tt\bf{\angle{OZY}=\dfrac{62}{2}=31^{\circ}}

In Δ XYZ :

\longmapsto\tt{\angle{OZY}+\angle{OYZ}+\angle{YOZ}=180^{\circ}\:(A.S.P)}

\longmapsto\tt{\angle{31^{\circ}}+\angle{29^{\circ}}+\angle{YOZ}=180^{\circ}}

\longmapsto\tt{60^{\circ}+\angle{YOZ}=180^{\circ}}

\longmapsto\tt{\angle{YOZ}=180^{\circ}-60^{\circ}}

\longmapsto\tt\bf{\angle{YOZ}=120^{\circ}}

Attachments:
Answered by MяMαgıcıαη
104
  • ∠ozy = 31°
  • ∠yoz = 120°

━━━━━━━━━━━━━━━━━━━━━━━━━━

Explanation :

\underline{\underline{\sf{\blue{Given\::-}}}}

  • xyz

In which,

  • yo is bisector of xyz
  • zo is bisector of xzy
  • ∠x = 60°
  • ∠y = 58°

\underline{\underline{\sf{\blue{To\:Find\::-}}}}

  • ∠ozy = ?
  • ∠yoz = ?

\underline{\underline{\sf{\blue{Solution\::-}}}}

Using angle sum property of triangle on xyz :-

\qquad\leadsto\quad\sf \angle{x} + \angle{y} + \angle{z} = 180^{\circ}

\qquad\leadsto\quad\sf 60^{\circ} + 58^{\circ} + \angle{z} = 180^{\circ}

\qquad\leadsto\quad\sf 118^{\circ} + \angle{z} = 180^{\circ}

\qquad\leadsto\quad\sf  \angle{z} = 180^{\circ} - 118^{\circ}

\qquad\leadsto\quad{\bf{\pink{  \angle{z} = 62^{\circ}}}}

  • As zo is bisector of z

Therefore,

\qquad\leadsto\quad\sf \angle{ozy} = \dfrac{\angle{z}}{2}

\qquad\leadsto\quad\sf \angle{ozy} = \dfrac{62^{\circ}}{2}

\qquad\leadsto\quad\sf \angle{ozy} = \dfrac{\cancel{62^{\circ}}}{\cancel{2}}

\qquad\leadsto\quad{\bf{\purple{  \angle{ozy} = 31^{\circ}}}}

Also,

  • yo is bisecror of y

Therefore,

\qquad\leadsto\quad\sf \angle{oyz} = \dfrac{\angle{y}}{2}

\qquad\leadsto\quad\sf \angle{oyz} = \dfrac{58^{\circ}}{2}

\qquad\leadsto\quad\sf \angle{oyz} = \dfrac{\cancel{58^{\circ}}}{\cancel{2}}

\qquad\leadsto\quad{\bf{\green{  \angle{oyz} = 29^{\circ}}}}

Now,

Using angle sum property of triangle on ∆ oyz :-

\qquad\leadsto\quad\sf \angle{yoz} + \angle{ozy} + \angle{oyz} = 180^{\circ}

\qquad\leadsto\quad\sf \angle{yoz} + 31^{\circ} + 29^{\circ}  = 180^{\circ}

\qquad\leadsto\quad\sf \angle{yoz} + 60^{\circ}  = 180^{\circ}

\qquad\leadsto\quad\sf  \angle{yoz} = 180^{\circ} - 60^{\circ}

\qquad\leadsto\quad{\bf{\red{  \angle{yoz} = 120^{\circ}}}}

Hence,

  • ∠ozy = 31°
  • ∠yoz = 120°

\underline{\underline{\sf{\blue{Note\::-}}}}

  • Diagram is in attachment !

━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions