Math, asked by vedantugale5051, 10 months ago

In the AP find the missing term in the boxes.
-4,box,box,box,box,6

Answers

Answered by Anonymous
8

 \large\bf\underline{Given:-}

  • AP:- -4 ,❐,❐,❐,❐, 6

 \large\bf\underline {To \: find:-}

  • Missing terms.

 \huge\bf\underline{Solution:-}

  • First term (a) = -4
  • 6th term = 6

 \dag \large \bf \: a_n = a + (n - 1)d

 \tt \: a_6 = a + (6 - 1)d \\  \\ \tt \: a_6 = a + 5d \\  \\ \tt \: a + 5d= 6......(i)

✝️ Substituting value of a = -4 in (i)

 \dashrightarrow\tt \: a + 5d = 6 \\  \\  \dashrightarrow\tt \:  - 4 + 5d = 6 \\  \\  \dashrightarrow\tt \: 5d = 6 + 4 \\  \\  \dashrightarrow\tt \: 5d = 10 \\  \\  \dashrightarrow\tt \: d =   \cancel\frac{10}{5}  \\  \\  \dashrightarrow\tt \: d = 2

Now ,

»★ 2nd term a + d = -4 + 2 = -2

»★ 3rd term a + 2d = -4+ 2×2 = 0

»★ 4th term a + 3d = -4 +3 × 2 = 2

»★ 5th term a + 4d = -4 + 4 × 2 = 4

  \boxed{ \bf - 4 \:,  \boxed{ - 2 } , \:   \boxed{0}  \:, \boxed{2}  \: ,\boxed{4},6}

Answered by Anonymous
9

Answer:

\sf{-4, \ \boxed{-2}, \ \boxed{0}, \ \boxed{2}, \ \boxed{4}, \ 6.}

Given:

  • \sf{First \ term \ (a)=-4}
  • \sf{6^{th} \ term \ (t_{6})=6}

To find:

  • Missing terms.
  • \sf{t_{2}, \ t_{3}, \ t_{4} \ and \ t_{5}}

Solution:

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{\therefore{t_{6}=a+(6-1)d}}

\sf{But, \ a=-4 \ and \ t_{6}=6}

\sf{\therefore{6=-4+5d}}

\sf{\therefore{5d=6+4}}

\sf{\therefore{5d=10}}

\sf{\therefore{d=\frac{10}{5}}}

\sf{\therefore{d=2}}

________________________________

\sf{Here, \ a=-4 \ and \ d=2}

\sf{t_{2}=a+d=-4+2=-2,}

\sf{t_{3}=a+2d=-4+2(2)=0,}

\sf{t_{4}=a+3d=-4+3(2)=2,}

\sf{t_{5}=a+4d=-4+4(2)=4.}

\sf\purple{\tt{-4, \ \boxed{-2}, \ \boxed{0}, \ \boxed{2}, \ \boxed{4}, \ 6.}}

Similar questions