Math, asked by rozakhan678, 7 months ago

in the fig the line segments joining the mid points a and b of opposite side pq and sr of quadrilateral pqrs prove that other sides of quadrilateral are equal​

Answers

Answered by yashchauhan010906
0

Step-by-step explanation:

PR & SQ bisect each other i.e. OP=OR & OQ=OS.

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣AC

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR=

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 2

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣AC

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ=

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 2

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21 AC...(1)

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21 AC...(1)from eq (1) and (2)

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21 AC...(1)from eq (1) and (2)PQ= SR & PQ || SR

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21 AC...(1)from eq (1) and (2)PQ= SR & PQ || SRSo, in PQRS, one pair of opposite sides is parallel and equal.

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21 AC...(1)from eq (1) and (2)PQ= SR & PQ || SRSo, in PQRS, one pair of opposite sides is parallel and equal.∴PQRS is parallelogram

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21 AC...(1)from eq (1) and (2)PQ= SR & PQ || SRSo, in PQRS, one pair of opposite sides is parallel and equal.∴PQRS is parallelogramPR & SQ are its diagonals and diagonals of parallelogram bisect each other

PR & SQ bisect each other i.e. OP=OR & OQ=OS.In ΔADC,∴SR∣∣ACSR= 21 AC...(1)In ΔABC,∴PQ∣∣ACPQ= 21 AC...(1)from eq (1) and (2)PQ= SR & PQ || SRSo, in PQRS, one pair of opposite sides is parallel and equal.∴PQRS is parallelogramPR & SQ are its diagonals and diagonals of parallelogram bisect each other∴OP=OR & OQ=OS

Similar questions