Math, asked by linahBV, 11 months ago

In the figure,AB=25 m AD 17m DP=8 m AQ=5m BR=14 m and BS=3 m find the area of the shaded region

Attachments:

Answers

Answered by rajsameer987654
5

Answer:

313.25

Step-by-step explanation:

HOPE YOU UNDERSTAND

MARK AS BRAINLIST ANSWER

THANK YOU

Attachments:
Answered by TooFree
27

Find the area of the big rectangle:

\text{Area} = \text{Length} \times \text{Breadth}

\text{Area} = \text{25} \times \text{17}

\text{Area} = 425 \text{ m}^2

Find the area of triangle DPQ:

\text{Base} = 17 - 5

\text {Base} = 12 \text{ m}

\text {Height} = 8 \text{ m}

\text{Area of triangle} = \dfrac{1}{2}  \times \text{Base} \times \text{Height}

\text{Area of triangle} = \dfrac{1}{2}  \times \text{12} \times \text{8}

\text{Area of triangle} = 48 \text{ m}^2

Find the area of triangle QAR:

\text{Base} = 25 - 14

\text {Base} = 11 \text{ m}

\text {Height} = 5 \text{ m}

\text{Area of triangle} = \dfrac{1}{2}  \times \text{Base} \times \text{Height}

\text{Area of triangle} = \dfrac{1}{2}  \times \text{11} \times \text{5}

\text{Area of triangle} = 27.5 \text{ m}^2

Find the area of triangle PCS:

\text{Base} = 25 - 8

\text {Base} = 17 \text{ m}

\text {Height} = 17 - 3

\text {Height} = 14 \text{ m}

\text{Area of triangle} = \dfrac{1}{2}  \times \text{Base} \times \text{Height}

\text{Area of triangle} = \dfrac{1}{2}  \times \text{17} \times \text{14}

\text{Area of triangle} = 119 \text{ m}^2

Find the area of triangle RBS:

\text {Base} = 14 \text{ m}

\text {Height} = 3 \text{ m}

\text{Area of triangle} = \dfrac{1}{2}  \times \text{Base} \times \text{Height}

\text{Area of triangle} = \dfrac{1}{2}  \times \text{14} \times \text{3}

\text{Area of triangle} = 21 \text{ m}^2

Find the area of the shaded region:

\text{Shaded Region} = 425 - 48 - 27.5 - 119 - 21

\text{Shaded Region} = 209.5 \text { m}^2

Answer: 209.5 m²

Attachments:
Similar questions