Math, asked by vilusp, 13 days ago

In the figure, ABC is a right angled triangle, B= 90°....Write down all the trigonometric ratios of A and C​

Attachments:

Answers

Answered by Anonymous
150

Given :-

A right angled triangle ABC, right angled at B.

To Find :-

All the trigonometric ratios of C and A

Solution :-

We know that,

  \sf  \leadsto\red{sin \: θ =  \frac{perpendicular}{hypotenuse} } \:  \:  \:   \:  \\  \sf \leadsto \orange{cos \: θ =  \frac{base}{hypotenuse} } \:  \:   \:  \: \:  \:  \:  \\  \sf \leadsto \pink{tan \: θ =  \frac{perpendicular}{base} } \:  \:  \:  \\  \sf \leadsto \green{cosec \: θ =  \frac{hypotenuse}{perpendicular} } \\  \sf \leadsto \gray{sec \: θ =   \frac{hypotenuse}{base} } \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf \leadsto \blue{cot \: θ =  \frac{base}{perpendicular} } \:  \:  \:  \:

Now, when observer i.e. θ is A,

  • Perpendicular = BC
  • Base = AB
  • Hypotenuse = AC

Therefore,

  \sf  \leadsto\red{sin \: A =  \frac{BC}{AC} } \:  \:  \:  \\  \sf \leadsto \orange{cos \: A =  \frac{AB}{AC} } \:  \:   \\  \sf \leadsto \pink{tan \: A =  \frac{BC}{AB} }   \:  \:  \: \\  \sf  \leadsto \green{cosec \: A =  \frac{AC}{BC} } \\  \sf \leadsto \gray{sec \: A =   \frac{AC}{AB} }    \:  \:  \: \\  \sf \leadsto \blue{cot \: A =  \frac{AB}{BC} }  \:  \:

Now, when observer i.e θ is C,

  • Base = BC
  • Perpendicular = AB
  • Hypotenuse = AC

Therefore,

  \sf  \leadsto\red{sin \: C =  \frac{AB}{AC} }   \:  \:  \:  \: \\  \sf \leadsto \orange{cos \: C =  \frac{BC}{AC} } \:  \:  \:  \:   \\  \sf \leadsto \pink{tan \: C =  \frac{AB}{BC} }   \:  \:  \:  \\  \sf \leadsto \green{cosec \: C =  \frac{AC}{AB} } \\  \sf \leadsto \gray{sec \: C =   \frac{AC}{BC} }    \:  \:  \:  \: \\  \sf \leadsto \blue{cot \: C =  \frac{BC}{AB} } \:  \:  \:  \:

Hope it helps you :)

Answered by Anonymous
38

Question -

In the figure, ABC is a right angled triangle, B= 90°....Write down all the trigonometric ratios of A and C

Answer -

Here ∠CAB is an acute angle. Observe the position of the sides with respect to angle A.

- BC is the opposite side of Angle A

- AB is the adjacent side with respect to angle A.

- AC is the hypotenuse of the right angled triangle ABC

The trigonometric ratios of the angle A in the right angled triangle ABC can be defined as follows.

Sin A - Side Opposite To angle A / Hypotenes = BC/AC

cos A - Side Adjacent to Angle A / Hypotenes = AB/AC

tan A - Side opposite To Angle A / Side Adjacent to Angle A = BC/AB

csc A - Hypotheses / Side opposite To Angle A = AC/BC

sec A - Hypotheses / Side Adjacent to Angle A =AC/AB

cot A - side adjecent To Angle A / Side Opposite To angle A = AC/BC

Now let us define the trigonometric ratios for the acute angle C in the right angled triangle,

∠ABC= 90°

Observe that the position of the sides changes when we consider angle 'C' in place of angle A.

  • Sin C - AB / AC
  • cos C - BC / AC
  • tan C - AB / BC
  • csc C - AC / AB
  • Sec C - AC / BC
  • cot C - BC / AB

Hope it's Helpful.

#BeBrainly

Similar questions