Math, asked by 7724shivali, 4 months ago

In the figure,ABCD is a rectangle, Finds the values of x and y (question from pair of linear equation in 2 variables)​

Attachments:

Answers

Answered by cαlypso
25

Given

  • Rectangle ABCD
  • Length of AD ⇒ 14 cm
  • Length of AB ⇒ 30 cm
  • Length of CD ⇒ x + y cm
  • Length of BC ⇒ x - y cm

_____________________________

To Find

  • The value of 'x' and 'y'

_____________________________

Solutions

We know that the opposite sides of a rectangle are equal.

Therefore we can say that,

  • AD = BC
  • AB = CD

CD = 30 cm

CD = x + y = 30

BC = 14 cm

BC = x - y = 14

Therefore,

  • x + y = 30 (i)
  • x - y = 14 (ii)

Let's find the value of 'x in equation (i) and with the obtained value we will find the value of 'y' in equation (ii)

x + y = 30

x= 30 - y

(30 - y) - y = 14

30 - y - y = 14

30 - 2y = 14

-2y = 14-30

-2y = -16

y = \dfrac{16}{2}

y = 8

Now with the value of 'y', we will find the value of 'x' in equation (i)

x+y= 30

x+8 =30

x = 30 - 8

x = 22

Let's verify if the values of 'x' and 'y' are correct in the given equation.

⇒ x + y = 30

⇒ 22 + 8 = 30

⇒ 30 = 30

⇒ x - y = 14

⇒ 22 - 8 = 14

⇒ 14 = 14

Hence, verified.

∴ x = 22 and y = 8

_____________________________

Answered by ItzShinyQueenn
1

 \bf \underline{Given:- }

•  \sf\: In  \: the \:  figure, \: ABCD  \: is  \: a \:  rectangle.

• \sf \:   Length, \:  AB = 30 \:  cm \:  and \:  CD = (x + y) \:  cm

•  \sf \: Breadth, \:  AD  = 14  \: cm  \: and \:  BC = (x-y)  \: cm

  \bf{ \underline{To \:  Find :- }}

•  \sf \: The  \: Values  \: of \:  x  \: and  \: y

  \huge\bf{ \underline{Solution :- }}

 \sf{In  \: the  \: rectangle,  \: AB = CD  \: and  \: AD= BC .}

 \sf{According  \: to \:  the \:  question, }

 \sf{x + y = 30} \:  \:  \:  (equation \:  \: 1)

 \sf{x-y=14} \:  \:  \: (equation \: \: 2  )

 \sf{ \: equation  \: (1)  \:  +   \: equation \:  (2), }

 \sf x + y + x - y = 30 + 14

 \rightarrow  \sf 2x = 44

 \rightarrow \sf x = 22

 \sf{using\:  the \:  value  \: of  \: x  \: into  \: the  \: equation \:  (1), }

 \sf22 + y = 30

 \rightarrow \sf y = 30 - 22

 \rightarrow \sf  y = 8

\\

 \bf \red{Hence, \:  the  \: value \:  of  \: x  \: is \:  22}

 \bf  \red{and  \: the  \: value  \: of  \: y  \: is  \: 8. }

Similar questions