In the figure angle p = 60 If QO,RO are bisectors of angle Q and angle R respectively . Find the of angle QOR.
Answers
GIVEN:
∠P = 60°
∠OQP = ∠OQR [ QO , OR are
∠PRO = ∠ORQ the bisectors of ∠Q and ∠R]
TO FIND:
∠QOR
SOLUTION:
In ΔPQR
∠OQP = ∠OQR = x
∴∠PQR = ∠PQO + ∠OQR = x+x =2x
∠PRO = ∠ORQ = x
∴∠PRQ = ∠PRO + ∠ORQ = x+x = 2x
∠PQR +∠PRQ + ∠QPR = 180° [ SUM OF Δ]
2x+2x + 60° = 180°
4x = 180°- 60° = 120°
x = = 30°
∠PRO = 30°
∠ORQ = 30°
∠PQO = 30°
∠OQR = 30°
∠PRQ = x+x = 60°
∠PQR = x+x = 60°
In Δ OQR
∠PQO +∠OQR +∠QOR = 180° [ SUM OF Δ]
30° +30° +∠QOR = 180°
∠QOR = 180° - 60° = 120°
(or)
In ΔPQR
Let ∠PQR and ∠PRQ be x
∠PQR +∠PRQ + ∠QPR = 180° [ SUM OF Δ]
x+x+60° = 180°
2x = 180°-60° = 120°
x = = 60°
∠PQR = 60°
∠PRQ = 60°
PQR = ∠OQR
2
60 = 30° = ∠OQR
2
∠PRQ = ∠ORQ
2
60 = 30° = ∠ORQ
2
In ΔOQR
∠PQO +∠OQR +∠QOR = 180° [ SUM OF Δ]
30° +30° +∠QOR = 180°
∠QOR = 180° - 60° = 120°
12345678910125765345