Math, asked by abdulhkhan8155, 5 months ago

in the figure, BC=CD=DE and P is the mid point of CD. which of the following is the area of triangle

Answers

Answered by pvmstp3315
0

Answer:

In triangle ABC

D is the midpoint of BC

DE perpendicular to AB

And DF perpendicular to AC

DE=DF

To prove:

Triangle ABC is an isosceles triangle 

Proof:

In the right angles triangle BED and CDF

Hypotenuse BD=DC ( because D is a midpoint )

Side DF=DE ( given)

△BED≅CDF ( RHS axiom)

∠C=∠B

AB=AC ( sides opposite to equal angles

△ABC is an isosceles triangle

Similar questions