Math, asked by Vijay1897, 1 year ago

In the figure BD = DC and angle DBC = 25. Find the measure of BAC.

Answers

Answered by GalacticCluster
31

Answer:

In ∆BCD, we have

 \\  \qquad \sf \: BD = DC \\  \\  \\  \implies \sf \angle \: DCB =  \angle \: DBC \\  \\  \\  \implies \sf \:  \angle \: DCB = 25 {}^{ \circ}   \\  \\

Also,

 \\  \sf \angle \: DCB +  \angle \: DBC +  \angle \: BDC = 180 \\  \\  \\  \implies \sf \: 25 + 25 +  \angle \: BDC = 180 \\  \\  \\  \implies \sf \angle \: BDC = 130 {}^{ \circ}  \\  \\

Since ABCD is a cyclic quadrilateral.

 \\  \therefore  \:  \:  \:  \:  \sf \angle \: BAC +  \angle \: BDC = 180 \\  \\  \\  \implies \sf \angle \: BAC+ 130 = 180 \\  \\  \\  \implies \sf \:  \angle \: BAC = 50 {}^{ \circ}  \\  \\

Similar questions