Math, asked by parevillanueva, 1 year ago

In the figure below, the segments WX and WY are tangent to the circle centered at O. Given that OX=13 and WY=14.4, find OW

Answers

Answered by lex1011
2

Answer:

Given: A circle with centre 'O'

           WX & WY are tangents.

            OX = 13

            WY = 14.4

To find: OW

Proof:

WY = 14.4

WX = WY (tangents)

⇒ WX = 14.4

In ΔWXO,

∠WXO = 90° (tangent is ⊥ to pt. of contact)

⇒ ΔWXO is a right angled triangle.

∴ OW² = OX² + WX²

           = 13² + 14.4²

           = 169 + 207.36

           = 376.36

⇒ OW = √376.36

           = 19.6



Similar questions