Math, asked by siddheshkaraliya777, 1 month ago

In the figure, DE || BC.
DE = 4 cm, BC = 8 cm,
A(A ADE) = 25 cm? find A(A ABC)​

Answers

Answered by XxSonaxX
186

Step-by-step explanation:

Answer:-

 \:  \:  \:

Given:-

DE  \: ∥  \: BC

In  \:  \: ΔADE  \:  \: and \:  \:  ΔABC 

 \:  \:

To  \:  \: find:-

the \:  \:  area  \:  \: of  \:  \: ΔABC.

‌‌‎

Solution:-

We  \:  \: know  \:  \: that, 

∠ADE \:  = \:  ∠B  \:  [Corresponding \:  \:  angles] 

∠DAE  \: =  \: ∠BAC  \:  [Common] 

Hence,  \:  \: ΔADE \:  ~ \:  ΔABC  \: (AA \:  \:  Similarity)

 \:  \:

Since  \:  \: the  \:  \: ratio  \:  \: of \:  \:  areas  \:  \: of  \\ two  \:  \: similar \:  \:  triangles  \:  \: is  \:  \: equal  \\ to  \:  \: the  \:  \: ratio  \:  \: of  \: squares \:  \:  of  \:  \: their  \\ corresponding \:  \:  sides, \:  \:  we  \:  \: have, 

 \:  \:

 \frac{AR\:  \: ΔADE\: }{AR \: ΔABC}  =  \:  \frac{DE²}{BC²}

 \frac{25  \: }{AR \:Δ ABC \: }  \:  =  \frac{4²}{8²}

AR \: (ΔABC) \:  =  \: ( \frac{8 {}^{2} \times 25 }{4 {}^{2} } )

AR\:Δ ABC \:  =  \: 100cm {}^{2}

 \:  \:

Hence,  \:  \: the \:  \:  area  \:  \: of  \:  \:  ΔABC \:  \:  is  \:  \: 100 cm {}^{2}

Answered by ComedyQueen
2

Step-by-step explanation:

Science is the pursuit and application of knowledge and understanding of the natural and social world following a systematic methodology based on evidence. Scientific methodology includes the following: ... Evidence. Experiment and/or observation as benchmarks for testing hypotheses.

Similar questions