Math, asked by anushka2947, 7 months ago

In the figure given above, ABC is a right triangle right angled at C. If D is mid-point of BC, prove that AB^2 = 4AD^2 -3AC^2 ​

Attachments:

Answers

Answered by Cynefin
62

 \LARGE{ \underline{\underline{ \pink{ \bf{Required \: answer:}}}}}

GiveN:

  • ∆ABC is a right angled triangle, right angled at C.
  • D is the midpoint of base BC.

To Prove:

  • AB² = 4AD² - 3AC²

Step-wise-Step Explanation:

Refer to the attachment for the diagram with basic information and labellings.

Using Pythagoras theoram in ACD:

⇒ AC² + DC² = AD²

⇒ AC² + (BC/2)² = AD²

⇒ AC² + BC² / 4 = AD²

Multiplying 4 with the above equation,

⇒ 4AC² + BC² = 4AD² ...............(1)

Now using Pythagoras theoram in ∆ACB:

⇒ AC² + BC² = AB² ..........(2)

Subtracting eq. (2) from eq. (1),

⇒ 4AC² + BC² - AC² - BC² = 4AD² - AB²

⇒ 3AC² = 4AD² - AB²

This can be written as:

⇒ AB² = 4AD² - 3AC²

And this is what we had to prove!!

Attachments:
Answered by sara122
3

Answer:

\huge \orange{ \overbrace{ \red{\underbrace \color{pink} {\underbrace \color{lime}{\colorbox{black} { {\red \: {Answer}}}}}}}}

\huge { \boxed{ \underline{ \sf{ \orange{✯Given✧:-}}}}}

  • ∆ABC is a right angled triangle, right angled at C.

  • D is the midpoint of base BC.

\huge { \boxed{ \underline{ \sf{ \orange{✯To \: prove✧:-}}}}}

  • AB² = 4AD² - 3AC²

\huge { \boxed{ \underline{ \sf{ \orange{✯Solution✧:-}}}}}

  • Using Pythagoras theoram in ∆ACD:

⇒ AC² + DC² = AD²

⇒ AC² + (BC/2)² = AD²

⇒ AC² + BC² / 4 = AD²

  • Multiplying 4 with the above equation,

⇒ 4AC² + BC² = 4AD² ...............(1)

  • Now using Pythagoras theoram in ∆ACB:

⇒ AC² + BC² = AB² ..........(2)

  • Subtracting eq. (2) from eq. (1),

⇒ 4AC² + BC² - AC² - BC² = 4AD² - AB²

⇒ 3AC² = 4AD² - AB²

  • It can be also written as:

⇒ AB² = 4AD² - 3AC²

Similar questions