Math, asked by deepjayotipa7pvo, 1 year ago

 In the figure, O is the centre of the circle. What is the value of x?

       (i) 125°

(ii) 105°

(iii) 95°

(iv) 85°



Attachments:

rawanikunal2011: Angelx=55°

Answers

Answered by Anonymous
27
\huge\underline\mathfrak{Answer:-}

50°


\huge\underline\mathfrak{Solution:-}



\huge\underline\mathfrak{Theorm 1:-}

The angle subtended at the centre of a circle by an arc
is double the angle subtended by it on any point on the
remaining part of the.

\huge\underline{Step 1:-}

According to First Theorm :-

\angle{AOB}=2\angle{ACB}

\textbf{Therefore,}

\angle{AOB}=2(40°)

\angle{AOB}=80°




\huge\underline{Step 2:-}

Now in ∆AOB

\huge\underline\mathfrak{Theorm 2:-}

AO=OB.................
\textbf{Radius of circle}

\textbf{Therefore,}

AO=x

OB=x





\huge\underline{Step 3:-}

In ∆ ACB
\huge\underline\mathfrak{Theorm 3:-}

Sum of angle of ∆=180°

\textbf{Therefore,}

\angle{AOB}+\angle{OBA}+

\angle{BAO}=180°

On putting all values

=80°+x+x=180°

=2x=100°

 =x = \frac{100}{2}

X=5O°

Nitrome: sis 100/2 =50
Nitrome: not 55
saisagar6129: neha congrats for becoming a moderator
Answered by pumsjayankondan
4

Answer:

The answer is below

Step-by-step explanation:

Answer:−

50°

\hugemathfrak{Solution:-}

Solution:−

\huge\italic\mathfrak{Theorm 1:-}

Theorm1:−

The angle subtended at the centre of a circle by an arc

is double the angle subtended by it on any point on the

remaining part of the.

\huge\bold\{Step 1:-}

Step1:−

According to First Theorm :-

\angle{AOB}∠AOB =2\angle{ACB}∠ACB

\textbf{Therefore,}Therefore,

\angle{AOB}∠AOB =2(40°)

\angle{AOB}∠AOB =80°

\huge\underline{Step 2:-}

Step2:−

Now in ∆AOB

\huge\underline\mathfrak{Theorm 2:-}

Theorm2:−

AO=OB.................

\textbf{Radius of circle}Radius of circle

\textbf{Therefore,}Therefore,

AO=x

OB=x

\huge\underline{Step 3:-}

Step3:−

In ∆ ACB

\huge\underline\mathfrak{Theorm 3:-}

Theorm3:−

Sum of angle of ∆=180°

\textbf{Therefore,}Therefore,

\angle{AOB}∠AOB +\angle{OBA}∠OBA +

\angle{BAO}∠BAO =180°

On putting all values

=80°+x+x=180°

=2x=100°

=x = \frac{100}{2}=x=

2

100

X=5O°

Similar questions