Math, asked by suchitapaliwal93, 11 months ago

In the figure, triangle ABC in the semi circle . Find the area if the shaded region given that AB =42 cm.

Attachments:

Answers

Answered by Luvcruze007
20

Answer:

943.74 cm²

Step-by-step explanation:

AB= diameter = 42cm

diameter = 2 x radius = 42cm

radius = 21cm

OC = radius of circle = 21cm

area of triangle ACB = ar. of AOC + ar. of BOC

                                  = 1/2 * base * height + 1/2 * base * height

                                 = 1/2(21*21 + 21*21)

                                 = 1/2(882)

                                 = 441cm²

area of semi-circle= π*r² =  π*(d/2)² = 3.14* 21*21 = 1384.74 cm²

area of shaded region = area of semicircle - area of triangle ACB

                                     = 1384.74 - 441

                                     = 943.74 cm²

Answered by Anonymous
7

Given:

AB=42cm

To find:

the area of the shaded region

Solution:

AB is the diameter of the semi-circle and it is also the base of the triangle ABC.

OC is the radius of the semi-circle and it is also the height of the triangle ABC.

So,

OC=\frac{1}{2}AB

=\frac{42}{2}

=21cm

Now,

area of the shaded region = area of the semi-circle - area of the triangle

area of semi-circle=\frac{\pi r^2}{2}

=\frac{22}{7}×21×21×\frac{1}{2}

=11×3×21

=693cm^2

area of the triangle= \frac{1}{2}×base×height

=\frac{1}{2}×AB×OC

=\frac{1}{2}×42×21

=441cm^2

So the area of the shaded region=(693-441)cm^2

=252cm^2

Hence, the area of the shaded region is 252cm^2.

Similar questions