Math, asked by sequeirajerome21, 1 year ago

in the following figure BC= radius OB find the value of angle OCB

Attachments:

Answers

Answered by pankajagrawal5pa20re
24
23 is correct answer
Attachments:
Answered by ChitranjanMahajan
0

The value of the same OCB according to the given diagram is 23 degrees.

Given :

BC = Radius of the circle i.e. OB

Angle AOD = 69 degree

To Find :

The value of the angle OCB

Solution :

Calculations for the triangle AOB :

The sides OA and OB are the radius of the circle and thus the same.

Let the angle OAB be "y".

As OA = OB,  OAB = OBA = y

Equation 1 :         OAB + OBA + AOB = 180\\

                           AOB = 180 - OAB - OBA

                           AOB = 180 - y - y

                           AOB = 180 - 2y

Calculations for the triangle BOC :

The sides BC and OB are the same as the radius of the circle.

Let the angle BOC be "x".

As BC = OB,  BOC = BCO = x

Equation 2 :        BOC + OCB + OBC = 180\\

                           OBC = 180 - BOC - BCO

                           OBC = 180 - x-x

                           OBC = 180 - 2x

Angles ABO and OBC are complementary angles, thus

Equation 3 :         180 - 2x + y = 180

                             y = 2x

Angles AOD, AOB, and BOC are complementary angles, thus

Equation 4 :         69 + (180 - 2y) + x = 180

                            69 - 2y + x = 0

                            2y - x = 69

Combining Equations 3 and 4 from above, we get :

                            2(2x) - x = 69

                            3x = 69

                            x = 23

Hence, the value of the angle OCB i.e. x is 23 degrees.

To learn more about Angles in Circles, visit

https://brainly.in/question/49447595

#SPJ2

Similar questions