Math, asked by joshuadutt8, 7 months ago

In the following question find a and b

Attachments:

Answers

Answered by HulkBuster209
0

Step-by-step explanation:

iam also a questions problem bro

Answered by MysticPetals
1

Question :

 \frac{3 +  \sqrt{8} }{3 -  \sqrt{8} }  +  \frac{3 -  \sqrt{8} }{3 +  \sqrt{8} }  = a + b \sqrt{2}

To find :

» values of a and b

Solution

 \frac{3 +  \sqrt{8} }{3 -  \sqrt{8} }  +  \frac{3 -  \sqrt{8} }{3 +  \sqrt{8} }

 =  \frac{(3 +  \sqrt{8 })(3 +  \sqrt{8})  \:  \:  \:  \:   + (3 -  \sqrt{8})(3 -  \sqrt{8} )   } {(3 -  \sqrt{8})(3  +  \sqrt{8})  }

 \frac{ =  ({3 +  \sqrt{8} )}^{2}  + ({3  -   \sqrt{8} )}^{2} }{ {3}^{2} -  {( \sqrt{8}) }^{2}   }

 \frac{ = 9 + 8 + 6 \sqrt{8}  + 9 + 8 - 6 \sqrt{8}  }{9 - 8}

 =   \frac{17 + 17}{1}  = 34

 \therefore \:  \frac{3 +  \sqrt{8} }{3 -  \sqrt{8} }  +  \frac{3 -  \sqrt{8} }{3 +  \sqrt{8} } = 34

a + b \sqrt{2}  = 34  + 0

by \: comparing \: a = 34 \: and \: b = 0

______________________

More info :

✓ Here we need to take LCM [ Least common Multiple ] first and then solve the given condition. After that we have to equate it with the RHS to find the values of unknown variable 'a' and 'b'.

Similar questions