Math, asked by saymruthravy, 1 year ago

In the following sum the digits 0 to 9 have all been used, O = Odd, E = Even, zero is even and the top row's digits add to 9. Can you determine each digit?

Answers

Answered by vanshikagupta
0
423+675=1098 is the answer.
Answered by kvnmurty
0
you have forgotten to give the puzzle.  I have formulated the puzzle.  I am giving the  answer  also.

                     E    E    O        
                     E    O    O
              ===========
                O   E   O    E
             ===========

let the numbers be :  a b c  and  d e f  and the sum be :  1 g h i.    we know the the thousands digit of the sum is 1.  Other wise it will not be possible.

1.  a+b+c = 9      =>  there are three combinations possible for a, b  and c:
             2,3,4      ;;        1, 3, 5          and      0, 2, 7
   we hoped that  digit 1 is in the sum and not the addends.  so  two combinations remain.

2.  c ≠ 0  and  f ≠ 0.      as then  i = c  or  f.
         let us take combinations of 2,0,7.
       so 720 ,  270 not right.  we cannot have d = 0, as then sum d+g will be 10 at most. Digit 0 is already used.      That leaves us:  702,  207.    with 207, the d has to be 8 or 9. which cases 1 and 2 will repeat in the sum.    In case of 702, the middle digit needs a carry.  So f = 8 or 9.  In that case, i will be 0 or 1.  This is ruled out.

   Finally we are left with  a b c =    2 3 4,  243,  324, 342,  423,  432.

   d =2, gives rise to repetition of  0 or 1.   Try the remaining combinations. we get the following.

One answer possible:

       4  3  2 
       6  5  7
   ========
    1 0  8  9

Similar questions