Math, asked by ananya10152904, 11 months ago

In the given figure a metal container is in the form of a cylinder surmounted by a hemisphere. The internal height of the cylinder is 7m and the internal radius is 3.5m. Calculate (i) total area of the internal surface, excluding the base;(ii) the internal volume of the container in m3
pls answer quickly​

Attachments:

Answers

Answered by Anonymous
26

Given :-

  • Cylinder is submounted by a hemisphere .

  • Height of cylinder is 7 m .

  • Radius of cylinder is 3.5 m.

To find :-

  • Total surface area excluding base .

  • Volume of container.

Solution :-

Formula used :-

{ \underline{ \underline{ \sf{ \implies \: LSA \: of \: cylinder = 2\pi.rh}}}} \\

{ \underline{ \underline{ \sf{\implies \:LSA \: of \: hemisphere = 2\pi.{r}^{2}}}}} \\

 \underline{ \underline{ \sf{ \implies \: volume \: of \: cyl. = \pi {r}^{2} h}}} \\

{\underline{\underline{\sf{\implies \:Volume\:of\: Hemisphere= \frac{2}{3} \pi. {r}^{3}}}}} \\

1. Surface area of given container .

LSA of cylinder + CSA of hemisphere .

→ LSA of cylinder = 2 \frac{22}{7}  \\ ×3.5×7

\sf{\implies 2 \times 22 \times 3.5} \\

{ \underline{ \underline{ \sf{ \implies \: 154  \: {m}^{2}  = LSA}}}} \\

CSA of hemisphere = 2 \frac{22}{7} \times {3.5}^{2} \\

 \sf{ \implies \: 154 \times \frac{3.5}{7} } \\

\sf{ \implies 22 \times 3.5} \\

{ \underline{ \underline {\sf{ \implies \: 77 \:  {m}^{2}  = \: CSA}}}} \\

Internal surface area of container = 154 + 77

{\boxed{\boxed{\sf{ \implies 271 \: is \: the \: required\: area }}}} \\

2. Volume of container

Volume of cylinder + Volume of hemisphere.

→ Volume of cylinder = \sf{\frac{22}{7} \times {3.5}^{2} \times 7 } \\

\sf{\implies 22 \times 3.5 \times 3.5 } \\

{ \underline{ \underline{ \sf{ \implies \: 269.5 \:  {m}^{3}  =  \: volume}}}} \\

→ Volume of hemisphere = \sf{\frac{2}{3} \times \frac{22}{7} {3.5}^{3} }\\

  \sf{\implies \:  \frac{2}{3}  \times 22 \times 0.5 \times 3.5 \times 3.5} \\

{\underline{\underline{\sf{\implies 89.84 {m}^{3} \: = \: volume}}}} \\

Volume of container = 269.5 + 89.84

{ \boxed{ \boxed{ \sf{ \implies \: 359.34 \:  {m}^{3} }}}} \\

Attachments:
Similar questions