Math, asked by ravikuma3355, 1 year ago

in the given figure AB=AC, D is a point on AC and E is a point on AB such that AD=ED=EC=BC.prove that angle A: angle B=1:3

Answers

Answered by barsha01
27
Hope it helps...
plz mark as brainliest
Attachments:

ravikuma3355: how it double angoe a
ravikuma3355: angle A means
Answered by mysticd
16

 \underline { \pink{Given :}}

In ABC AB = AC , D is a point on AC and E is a point on AB such that

AD = ED = EC = BC

 \underline { \pink{To \:Prove :}}

 \angle A : \angle B = 1 : 3

 \underline { \pink{Proof :}}

 i) In \:\triangle AED , \\\: AD = ED \implies \angle {EAD} = \angle {AED}\: ---(1)

 \blue {( Angles \: opposite \:to \: equal \:sides}\\blue { are \: equal ) }

 ii) In \:\triangle BEC , \\\: EC = BC \implies \angle {CBE} = \angle {BEC} \: --(2)

 \angle { BEA} = 180 \degree \: [ Straight \:angle ]

 iii) In \:\triangle DCE , \\\: DE = EC \implies \angle {DCE} = \angle {CED} \: --(3)

 \implies \angle { BEC} + \angle { CED} + \angle { AED} = 180\degree

 \implies \angle { EAD} + \angle { CBE} + \angle { CED} = 180\degree

\implies  \angle A + \angle B +\angle { CED} = 180\degree

\implies  \angle A + \angle B + ( 180\degree - 2\angle {EDC} )= 180\degree

 \blue { Since, (\angle {CED} + 2\angle {EDC} = 180\degree)}

 \implies \angle A + \angle B - 2 \angle {EDC} = 0

 \implies \angle A + \angle B - 2\times 2\angle A = 0

 \implies \angle A + \angle B - 4\angle A = 0

 \implies  \angle B - 3\angle A = 0

 \implies \angle B =  3\angle A

 \implies \angle A : \angle B = 1 : 3

 Hence\: proved

•••♪

Attachments:
Similar questions