In the given figure , ABCD is a rectangle, whose diagonals intersects at '0'. Diagonals AC is produced to E and angle DCE =145°
Find angle CAB ANGLE AOB ANGLE ACB
Answers
utsitztizgozurzglxudzitzufzitzufxzjf-ufzfiztiitxxtizruUd-r7Itzirzitz7rzrizrizr8ztiz8tst8st8zt8zt8ztiz8tzt8zt8z8tztzt8u7rzrzrizitzrizriztiztizrizt9T8st8ztizr8zgtzr8z8tz8rst8ztizt8zt8zti 3zt8z47z484784z48tzariT8zt8zt8z8tzt8zr9zt8zztis48a594a48zt8zzr8r8z8ra48st8s8584a48a84atzt9s
Answer:
Step-by-step explanation:
in the given figure, ABCD is a rectangle, whose diagonals intersect at O.
Consider the attached figure while going through the following steps.
Given,
ABCD is a rectangle, whose diagonals intersect at O.
Diagonal AC is produced to E
∠ DCE = 145°
∠ DCE + ∠ DCO = 180° (form a straight line)
145° + ∠ DCO = 180°
∠ DCO = 180° - 145° = 35°
∠ DCO = ∠ OAB (alternate angles)
∠ OAB = 35°
∠ OAB = ∠ OBA (angles opposite to equal sides are equal)
∠ OBA = 35°
∠ OBA = ∠ ODC (alternate angles)
∠ ODC = 35°
∠ CAB = 35°
In Δ ODC,
∠ ODC + ∠ DCO + ∠ COD = 180°
35° + 35° + ∠ COD = 180°
70° + ∠ COD = 180°
∠ COD = 180° - 70° = 110°
∠ COD = ∠ AOB = 110° (vertically opposite angles)
In Δ ABC,
∠ ABC + ∠ ACB + ∠ BAC = 180°
90° + ∠ ACB + 35° = 180°
∠ ACB = 180° - 90° - 35°
∠ ACB = 55°