Math, asked by ArjunTomar3536, 1 year ago

In the given figure ABCD is a rhombus with angle A 67degree if DEC is an equilateral triangle calaculate ANGLE CBE AND ANGLE CBE

Answers

Answered by MSMS4
56
❤️❤️Hope it helps you....
Please mark brainliest...... :-) ❤️❤️
Attachments:
Answered by amirgraveiens
12

∠ CBE = 26.5°  and ∠ DBE =  30°

Step-by-step explanation:

Given:

In rhombus ABCD, ∠ A = 67°

∴ ∠ BAD = 67° and ∠ ABC = 180° - 67° = 113°  

∆ DEC is an equilateral triangle

∴ ∠ DCE = 60°

∠ BCE = ∠ BCD + ∠ DCE = 67° + 60° = 127°            [1]

In ∆BCE,

BC = CE                   [ sides of equilateral triangle are equal]

∴ ∠ CBE = ∠ CEB   [ angles adjacent to equal sides are equal    [2]

Using angle sum property for ∆BCE  

∠ CBE + ∠ CEB + ∠ BCE = 180°                

⇒ ∠CBE + ∠CBE + 127° = 180°  [using (1) and (2)]

⇒ 2∠ CBE = 180° - 127° = 53°

\angle CBE = \frac{53 }{2}

⇒ ∠ CBE = 26.5°

 

Diagonals of a rhombus bisect the angle ,

⇒ ∠ABD = ∠DBC = \frac{\angle ABC}{2} = \frac{113}{2} = 56.5°                

⇒ ∠ DBE = ∠ DBC - ∠ CBE = 56.5° – 26.5° = 30°

⇒ ∠ DBE =  56.5° – 26.5°

⇒ ∠ DBE =  30°

Therefore, ∠ CBE = 26.5°  and ∠ DBE =  30°

Attachments:
Similar questions