Math, asked by aqeedahzahoor, 9 months ago

In the given figure,ABCD is a trapezium. FG is a straight line. Find angle EBF.​

Attachments:

Answers

Answered by StarrySoul
11

Given :

• ABCD is a Trapezium

• FG is a straight line

To Find :

• Angle EBF

Solution :

In a Trapezium Opposite Sides are Parallel

 \therefore \sf \: AB  \parallel \: DC

When AB and DC are two lines parallel to each other EC is transversal.

 \bullet \:  \sf \angle \: BCD =  45^{\circ} \:  \:  \: (Given)

When FG is a straight line

 \rightarrow \:  \sf \angle \: BCD =   \angle \: ABE = 45^{\circ}

Angle Sum Property :

 \longrightarrow \sf \angle \: ABE +  \angle \: GBC+  \angle \: ABG = 180^{\circ} \:  \:  \: (Linear \:  Pair )

 \longrightarrow \sf 45^{\circ} \:  +  \angle \: GBC + 30^{\circ} =  180^{\circ}

 \longrightarrow \sf 75^{\circ} \:  +  \angle \: GBC =  180^{\circ}

 \longrightarrow \sf \:  \angle \: GBC =  180^{\circ} - 75^{\circ}

 \longrightarrow  \sf \:  \angle \: GBC =  105^{\circ} \:

Now,

 \bigstar \large\boxed{\sf \:  \angle \: GBC =   \angle \: EBF =  105^{\circ}}

(Verticallly Opposite Angle)

Hence, Angle EBF = 105°

Answered by Anonymous
16

\bold{\mathtt{Given}}

⟹ ABCD is a trapezium

⟹ AB|| DC

⟹ Angle ABG = 30°

⟹ Angle BCD = 45°

\bold{\mathtt{Solution}}

⟹ As AB || DC , Angle DCB = Angle ABE

Corresponding angles .

Angle ABE = 45° eq ( I )

Now Taking linear pair

[ Sum of linear pair is 180° ]

⟹ Angle ABG + ABE + EBF = 180°

Putting value of angle ABG and Angle ABE ( from eq I )

⟹ 30° + 45° + EBF = 180°

⟹ 75° + EBF = 180°

⟹ EBF = 180° - 75°

Angle EBF = 105°

Attachments:
Similar questions