Math, asked by harishChandxx, 3 months ago

In the given figure , D and E trisect BC . Prove that 8AE^2 = 3AC^2+5AD^2​

Attachments:

Answers

Answered by RISH4BH
54

GiveN :-

  • In the given figure , D and E trisect BC .

To ProvE :-

  • 8AE² = 3AC² + 5AD²

ProoF :-

Given that , In the given figure , D and E trisect BC . We need to prove that 8AE² = 3AC² + 5AD² . It's pretty clear that we have to make use of the Pyhtagoras Theorem or Baudhayan's Theorem . This Theorem states that in a right angled triangle the sum of squares of base and perpendicular is equal to the square of hypontenuse. That is ,

\sf\pink{\dashrightarrow Hypontenuse^2 = Perpendicular^2+Base^2 }

\red{\frak{In \ figure }}\begin{cases}\sf AC^2= AB^2+BC^2 \\\sf AE^2=AB^2+BE^2\\\sf AD^2= AB^2+BD^2 \end{cases}

D I A G R A M :-

\setlength{\unitlength}{1 cm}\begin{picture}(12,8)\thicklines\put(0,0){\line(1,0){6}}\put(0,0.001){\line(0,1){4}}\put(2,0){\line(-1,2){2}}\put(4,0){\line(-1,1){4}}\put(6,0){\line(-3,2){6}}\put(0,-0.4){\sf B}\put(2,-0.4){\sf D }\put(4,-0.4){\sf E }\put(6,-0.4){\sf C }\put(0,4.4){\sf A }\put(1,-0.4){\bf x }\put(3,-0.4){\bf x }\put(5,-0.4){\bf x }\put(0.2,0){\line(0,1){0.2}}\put(0.2,0.2){\line(-1,0){0.2}} \put(4,3){$\boxed{\sf @RishabhRanjan } $}\end{picture}

Let's start by taking RHS and try to get LHS :-

\red{\bigstar}\underline{\sf Taking \ RHS }

\sf\to 3AC^2 + 5AD^2 \\\\\to\sf  3( AB^2+BC^2) + 5(AB^2 + BD^2 ) \\\\\to \sf 3AB^2 + 3BC^2+5AB^2+5BD^2 \\\\\sf \to 8AB^2 + 3BC^2 + 5BD^2

So here we got 8AB² + 3BC² + 5BD². Now basically we need to convert 3BC² + 5BD² into 8BE² because 8AB² + 8BE² = 8AE² .

\sf\to 8AB^2 + 3\bigg( \dfrac{3BE}{2}\bigg)^2 + 5\bigg(\dfrac{BE}{2}\bigg)^2 \\\\\to \sf 8AB^2 + 3\times \dfrac{9BE^2}{4}+\dfrac{5BE^2}{4} \\\\\to\sf  8AB^2 + \dfrac{27BE^2}{4}+\dfrac{5BE^2}{4}\\\\\to\sf  8AB^2 + \dfrac{ 27BE^2+5BE^2}{4}\\\\\to\sf  8AB^2 +\dfrac{32BE^2}{4} \\\\\sf\to 8AB^2 + 8BE^2 \\\\\to \sf 8( AB^2+BE^2) \\\\\to \sf \pink{8AE^2 }

\sf\qquad\qquad\red{\bigstar} \:\: = RHS

\boxed{\green{\bigstar}\textsf{\textbf{\orange{ Hence Proved !! }}}</p><p>\green{\bigstar}}

Similar questions