Math, asked by gurdevsingh45530, 1 month ago

In the given figure, DE || BC. If AD = 25 cm , AE=19 cm,BD=(x+3)cm, and EC=x cm. then AB is equal to​

Attachments:

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{DE{\parallel}BC\;and\;AD=25\,cm,AE=19cm,BD=x+3\,cm,EC=x\,cm}

\mathsf{}

\underline{\textbf{To find:}}

\textsf{AB}

\underline{\textbf{Solution:}}

\underline{\textbf{Basic proportionality theorem:}}

\textsf{If a line is drawn parallel to one side of a triangle, then}

\textsf{cuts other two sides proportionally}

\mathsf{In\;\triangle\,ABC,DE{\parallel}BC}

\textsf{By Basic proportionality theorem,}

\mathsf{\dfrac{AD}{BD}=\dfrac{AE}{EC}}}

\mathsf{\dfrac{25}{x+3}=\dfrac{19}{x}}

\mathsf{25x=19(x+3)}

\mathsf{25x=19x+57}

\mathsf{25x-19x=57}

\mathsf{6x=57}

\mathsf{x=\dfrac{57}{6}}

\mathsf{x=\dfrac{19}{2}}

\implies\mathsf{x=9.5}

\mathsf{Now,}

\mathsf{AB=AD+BD}

\mathsf{AB=25+(x+3)}

\mathsf{AB=25+(9.5+3)}

\implies\boxed{\mathsf{AB=37.5}}

\underline{\textbf{Find more:}}

In ∆ABC, PQ||AB. If AP=10cm. PC=8cm, QC=12cm. then find BQ

https://brainly.in/question/40517515

Similar questions