Math, asked by ijvpnjd821, 5 months ago

In the given figure DE || BC, then find the value of x.

Attachments:

Answers

Answered by GaneshRM2006
2

Answer:

given DE ║ Bc

In ΔADE and ΔABC

∠ADE = ∠ABC [as BC║DE ∠ADE and ∠ABC are corresponding angles                                                                                                            .                                                        nd they are equal ]

∠AED = ∠ ACB  

∠DAE=∠BAC  (common angle)

△ADE ∼ △ABC by AAA similarity criterion

here AB = 5cm and AD =2cm

and DE = 4cm and BC = x

AB and AD are corresponding sides and corresponding sides are proportional in similar triangles.

therefore AD/AB = DE/BC

                   2 / 5   = x / 4

                     2x   = 20    [on cross multipling]

                      x   = 10

Answered by Anonymous
5

Given :-

AD = x

DB = 3x + 4

AE = x + 3

EC = 3x + 19

To Find :-

Value of 'x'

Solution :-

Since DE || BC

∴ \dfrac{AD}{DB}= \dfrac{AE}{EC}

DB

AD

=

EC

AE

(By Basic proportionality theorem )

Substituting the value,

➙ \dfrac{x}{3x+4}= \dfrac{x + 3}{3x+19}

3x+4

x

=

3x+19

x+3

➙ x ( 3x+19 ) = ( x+3 ) ( 3x+4 )

➙ 3x² + 19x = 3x² + 4x + 9x + 12

➙ 3x² + 19x = 3x² + 13x + 12

➙ 3x² - 3x² + 19x - 13x - 12 = 0

➙ 6x - 12 = 0

➙ 6x = 12

➙ x = \dfrac{12}{6}

6

12

➙ x = \dfrac{\cancel{12}}{\cancel{6}}

6

12

\huge{\boxed{\mathtt{\red{x\:=\:12}}}}

x=12

Now,

Putting value of 'x' :-

AD = x = 12

DB = 3x + 4 = 3(12) + 4 = 36 + 4 = 40

AE = x + 3 = 12 + 3 = 15

EC = 3x + 19 = 3(12) + 19 = 36 + 19 = 55

Hope it helps..

Similar questions