Math, asked by challengemaths, 1 year ago

In the given figure DE,EF,DF are line segments drawn parallel to AB,BC,CA respectively of triangle ABC and through its vertices

Show that
b) A is mid-point of FE
(ii) perimeter of A ABC
1/2(perimeter of A DEF)​

Answers

Answered by Anonymous
9

(1)  Since E and F are the midpoints of AC and AB.

BC||FE & FE= ½ BC= BD

BD || FE & BD= FE         ( By mid point theorem)

Similarly,

BF||DE & BF= DE

Hence, BDEF is a parallelogram                 

(2)  Similarly, we can prove that FDCE & AFDE are also parallelogram

Since,

BDEF is a parallelogram so its diagonal FD divides its into two Triangles of equal areas.

∴ ar(ΔBDF) = ar(ΔDEF)      ......... (1)

In Parallelogram AFDE

ar(ΔAFE) = ar(ΔDEF) (EF is a diagonal)      ......... (2)

In Parallelogram FDCE

ar(ΔCDE) = ar(ΔDEF) (DE is a diagonal)      ......... (3)

From (1), (2) and (3)

ar(ΔBDF) = ar(ΔAFE) = ar(ΔCDE) = ar(ΔDEF)      .....(4)

ar(ΔBDF) + ar(ΔAFE) + ar(ΔCDE) + ar(ΔDEF) = ar(ΔABC)

4 ar(ΔDEF) = ar(ΔABC)         (From eq 4)

ar(∆DEF) = 1/4 ar(∆ABC)      ........(5)

(3)  Area (parallelogram BDEF) = ar(ΔDEF) + ar(ΔBDF)ar(parallelogram BDEF) = ar(ΔDEF) + ar(ΔDEF)

ar(parallelogram BDEF) = 2× ar(ΔDEF)         (From eq 4) 

ar(parallelogram BDEF) = 2× 1/4  

ar(ΔABC)          (From eq 5)

ar(parallelogram BDEF) = 1/2 ar(ΔABC)

Answered by Anonymous
6

°◉◈✿。 [ Hєℓℓσ ] 。✿◈◉°

   ☟=============☟

     ⒶⓃⓈⓌⒺⓇ

   ☟=============☟❤Happy Friendship Day❤

Attachments:
Similar questions