In the given figure find the angles and give answers. If angle 8 = 55°, lines l and m are parallel to each other and t is a transversal.
Answers
Answer:
Step-by-step explanation:
This is your answer.
ThankQ
Answer:
angle 1 = 125°,
angle 2 = 55°,
angle 3 = 125°,
angle 4 = 55°
angle 5 = 125°,
angle 6 = 55°,
angle 7 = 125°,
angle 8 = 55°
Step-by-step explanation:
Given: L||M and let transversal be N
angle 8 = 55°
To find: All other remaing angles
Solution: angle 8 = angle 6 ----(Vert. opp. angle)
So,
angle 6 = 55°
Also,
angle 8 = angle 4 ----(Corres. angle)
Therefore,
angle 4 = 55°
Now
Since L||M & N is transversal
So,
angle 4 + angle 5 = 180° ----(sum of co-int. angle)
55° + angle 5 = 180°
angle 5 = 180° - 55°
angle 5 = 125°
Now again ,
angle 5 = angle 3 ----(alt. int. angle)
Therefore,
angle 3 = 125°
Also,
angle 3 = angle 1 ----(Vert. opp. angle)
angle 1 = 125°
angle 4 = angle 2 ----( ----"----)
angle 2 = 55°
angle 5 = angle 7 ----(----"----)
Therefore,
angle 7 = 125°
OR
angle 3 = angle 7 ----(corres. angle)
angle 7 = 125°
Solved