Math, asked by shivanibabita123, 7 months ago

In the given figure, find the measure of Angle DEF ?​

Attachments:

Answers

Answered by mysticd
10

 Given ,  In \: \triangle DEF , \angle D = 2x + 38,\\\angle F = 68\degree ,\red{ \angle E = ? }

 and,  In \: \triangle ABC , \angle A = 4x,\\\angle C = 68\degree ,\red{ \angle B = ? }

 In \: \triangle DEF \:and \: \triangle ABC

 EF = BC ( side)

\angle F = \angle C ( Angle )

 DF = AC \: (side)

\therefore  \triangle DEF \cong \triangle ABC

 \blue{ ( By \: SAS \: congruence \: rule )}

 \angle D = \angle A \: \green { ( C.PC.T )}

 \implies 2x + 38 = 4x

 \implies 38 = 4x - 2x

 \implies 38 = 2x

 \implies x = \frac{38 }{2}

 \implies x = 19 \: --(1)

/* By Angle Sum Property */

 \angle D + \angle E +  \angle F = 180\degree </p><p>[tex] </p><p>[tex]\implies 2x + 38 + \angle E + 68 = 180

 \implies 2\times 19 + 38+ \angle E + 68 = 180

\implies 38 + 38 + \angle E + 68 = 180

 \implies 144 + \angle E  = 180

 \implies \angle E  = 180 - 144

 \implies \angle E  = 36 \degree

Therefore.,

 \red{ Value \:of \:\angle {DEF} } \green { = 36 \degree}

•••♪

Similar questions