Math, asked by aartikatwa0, 4 months ago

in the given figure find x​

Attachments:

Answers

Answered by ToxicEgo
67

\huge\pink{Given:}

In ∆ABC,

  • <A=(x+10) °

  • <B=(3x+5) °

  • <C=(2x+15) °

\huge\red{To Find: }

  • The value of x=?

\huge\blue{Solution: }

Since,

We know that,

$um of all angles of a triangle is 180°.

: . <A+<B+<C=180°

→ (x+10) °+(3x+5) °+(2x+15) °=180°

→ 6x+30=180°

→ 6x=150°

→ x= 25°

: . The value of x is 25 °.

\huge\purple{@ItzSiddhi}

Answered by MissOxford
7

Answer :

\sf\pink{Given}

  • Angle A is ( x + 10 )

  • Angle B is ( 3x + 5 )

  • Angle C is ( 2x + 15 )

\sf\pink{To\: Find}

  • Value of "x" is ?

Explanation :

Rule :

Sum of all angles of a triangle is 180°

Therefore ,

\longrightarrow\bf{x + 10 + 3x + 5 + 2x + 15 = 180 }

\longrightarrow\bf{x + 3x + 2x + 15 + 5 + 10 = 180 }

\longrightarrow\bf{4x + 2x + 20 + 10 = 180 }

\longrightarrow\bf{6x + 30 = 180 }

\longrightarrow\bf{6x  = 180 - 30 }

\longrightarrow\bf{6x  = 150 }

\longrightarrow\bf{x  = \dfrac{150}{6}}

\longrightarrow\bf\pink{x  = 25}

  • Therefore value of x is 25 .
Similar questions