Math, asked by rajendraghosh1965, 5 months ago

in the given figure I is the incenter of triangle abc here Ai produced meets the circumcircle of triangle abc at d. ​

Answers

Answered by Anonymous
5

Answer:

ANSWER

Given−

TheΔABC,whoseincentreisI,hasbeeninscribedinacicle.

AIisproducedtomeetthecircumferenceatD.

BD&DChavebeenjoined.

∠ABC=55

o

&∠ACB=65

o

.

Tofindout−

(i)∠BCD=?(ii)∠CBD=?(iii)∠DCI=?(iv)∠BIC=?

Solution−

∠ABC=∠ADC=55

o

[sinceboththeangleshavebeensubtended

bythechordACtothecircumferenceatB&D].

Also,∠ACB=∠ADB=65

o

[sinceboththeangleshavebeensubtended

bythechordABtothecircumferenceatC&D].

So,∠BDC=∠ADC+∠ADB=55

o

+65

o

=120

o

.

Now,reflex∠BIC=2∠BDC(sincereflex∠BIC&∠BDCareangles

atthecentre&angleatthecircumferenceatDsubtendedby

thechordBC).

∴reflex∠BIC=2×120

o

=240

o

⟹∠BIC=360

o

−240

o

=120

o

.

Bythesamereasoning∠BAC=

2

1

×∠BIC=

2

1

×120

o

=60

o

.

Again,IistheincentreofΔABC.

∴AI,BI&CIareangularbisectorof

∠BAC,∠ABC&∠ACBrespectively.

∴∠BAI=

2

1

×∠BAC=

2

1

×60

o

=30

o

=∠CAI.

So,∠BCD=∠BAI=30

o

[since∠BCD&∠BAIareangles

atthecentre&angleatthecircumferenceatAsubtendedby

thechordBD].

Bythesamereasoning∠CBD=∠CAI=30

o

.

Again,CIistheangularbisectorof∠ACD.

∴∠BCI=∠ACI=

2

1

×65

o

=32.5

o

.

∴∠DCI=∠BCD+∠BCI=32.5

o

+30

o

=62.5

o

.

So∠BCD,∠CBD,∠DCI&∠BICare30

o

,30

o

,62.5

o

&120

o

respectively.

Hence,optionBiscorrect.

solution

Attachments:
Similar questions