Math, asked by veer527, 11 months ago


In the given figure, if AOB is a line then find the
measure of BOC, COD and DOA​

Attachments:

Answers

Answered by aradhyajadhav2004
28

Answer:

DOA+DOC+COB=180(Linear pair angles)

5y+3y+2y=180

10y=180

y=18

DOA=5*18=90

COD=3*18=54

BOC=2*18=36

Answered by Brainly4You
30

{\purple{\underline{\underline{\large{\mathtt{ANSWER:-}}}}}}

  • angle DOA = 90°
  • angle COD = 54°
  • angle BOC = 36°

__________________________________________

{\purple{\underline{\underline{\large{\mathtt{EXPLANATION:-}}}}}}

Given:-

  • AOB is a straight line.
  • angle DOA= 5y.
  • angle COD = 3y.
  • angle BOC = 2y.

To find:-

  • Measure of three angles.

Solution:-

\sf{We\: know,}

\sf{\green{AOC=180\: degrees [AOC\:is\:a\: straight\:line]}}

According to the question,

angle (DOA+COD+BOC)=180°

→5y+3y+2y = 180°

→10y = 180°

→y = 18°

Now , find these three angles.

  • angle DOA = 5×18° = 90°
  • angle COD = 3×18° = 54°
  • angle BOC = 2×18° = 36°

________________________________________

{\underline{\underline{\large{\mathtt{VERIFICATION:-}}}}}

  • angle DOA = 90°
  • angle COD = 54°
  • angle BOC = 36°

By adding,

90°+54°+36° = 180°

→180° = 180° (Verified)

_____________________________________

Attachments:
Similar questions