Math, asked by Indianpatriot, 1 year ago

in the given figure O is the centre and ab is the diameter. if ∠aoe is 150° and ∠dao is 51° calculate ∠ceb and ∠cbe

Attachments:

Answers

Answered by Anonymous
17

Answer:

In Triangle OEB:

OB = OE [radii of same circle]

Thus, /_OBE = /_OEB [opposite angles of equal sides]

/_EOB = 180 - /_EOA [Linear pair]

/_EOB = 180 - 150

/_EOB = 30°

In Triangle OEB:

/_EOB + /_OBE + /_OEB = 180° [Angle Sum Property]

30° + 2/_OEB = 180

2/_OEB = 150

/_OEB = 75° = /_OBE

/_CBE = 180° - /_OBE

= 180 - 75

/_CBE = 105°

2/_ADE = /_AOE [Angke on centre is double of the angle on the circle]

/_ADE = 150/2

/_ADE = 75°

/_AOE + /_OED + /_EDA + /_DAO = 360° [Sum of all angles of a quadrilateral]

/_OED = 360 - 150 - 75 - 51

/_OED = 94°

/_CEB + /_OEB + /_OED = 180° [Linear Pair]

/_CEB = 180 - 94 - 75

/_CEB = 11°

________________

Answered by prabhas24480
1

Answer:

In Triangle OEB:

OB = OE [radii of same circle]

Thus, /_OBE = /_OEB [opposite angles of equal sides]

/_EOB = 180 - /_EOA [Linear pair]

/_EOB = 180 - 150

/_EOB = 30°

In Triangle OEB:

/_EOB + /_OBE + /_OEB = 180° [Angle Sum Property]

30° + 2/_OEB = 180

2/_OEB = 150

/_OEB = 75° = /_OBE

/_CBE = 180° - /_OBE

= 180 - 75

/_CBE = 105°

2/_ADE = /_AOE [Angke on centre is double of the angle on the circle]

/_ADE = 150/2

/_ADE = 75°

/_AOE + /_OED + /_EDA + /_DAO = 360° [Sum of all angles of a quadrilateral]

/_OED = 360 - 150 - 75 - 51

/_OED = 94°

/_CEB + /_OEB + /_OED = 180° [Linear Pair]

/_CEB = 180 - 94 - 75

/_CEB = 11°

________________

Similar questions