In the given figure,O is the centre of larger circle.
BC=9cm and ED=5cm. Find the area of the shaded region
Answers
Answer -
Area of the shaded region is 643.5 cm²
Let the radius of the smaller circle be r and radius of the bigger circle be R.
Given -
- BC = 9 cm and ED = 5 cm
- O is the centre of larger circle
Find -
Area of the shaded region.
Solution -
Radius of bigger circle is R. So, OE = OA = OF = OB = R
→ OE = OD + ED
→ OD = R - 5
Similarly,
→ OB = OC + BC
→ OC = R - 9
Now, join AD and CD.
In ∆ADC, which is a right angled triangle.
= 90°
In ∆AOD and ∆DOC
→ OD = OD (common)
→ = = 90°
→ =
So, ∆AOD ~ ∆DOC
=
=
=
=
=
=
Now,
→ AB = OA + OB
→ AB = 25 + 25
→ AB = 50
So,
→ AC = 50 - 9
→ AC = 41
So, radius =
•°• Area of shaded region = Area of bigger circle - Area of smaller circle.
→ πR² - πr²
→ π(R² - r²)
→
→
→
→
→
Let R be the bigger radius.
________________________________________________
→OE = OD + ED
→OD = R - 5
________________________________________________
→OB = OC + BC
→OC = R - 9
________________________________________________
Joining AD with CD
∆ ADC = 90°
________________________________________________
→∆ AOD, ∆ DOE
→OD = OD
→∠O = ∠O = 90°
→∠ADO = ∠DCO
________________________________________________
∆ AOD = ∠ DCO
→OA / OD = OD / OC
________________________________________________
→OD² = OA × DC
→(R - 5)² = R (R - 9)
→R² + 25 - 10R = R² - 9R
10R - 9R = 25
→
→R = 25
________________________________________________
→AB = OA + OB
→AB = 25 + 25
→AB = 50
________________________________________________
→AC = 50 - 9
→AC = 41
→41 / 2 = R
________________________________________________
→π R² - π r²
→π (R² / r²)
→22 / 7 { ( 25)² - ( 41 / 2 )² }
→22 / 7 ( 625 - 1681 / 4 )
→1287 / 2
→643.5 cm²