Math, asked by wwwshubhkarjha533, 10 months ago

In the given figure,O is the centre of larger circle.
BC=9cm and ED=5cm. Find the area of the shaded region

Attachments:

Answers

Answered by Anonymous
92

Answer -

Area of the shaded region is 643.5 cm²

\rule{200}2

Let the radius of the smaller circle be r and radius of the bigger circle be R.

Given -

  • BC = 9 cm and ED = 5 cm
  • O is the centre of larger circle

Find -

Area of the shaded region.

Solution -

Radius of bigger circle is R. So, OE = OA = OF = OB = R

→ OE = OD + ED

→ OD = R - 5

Similarly,

→ OB = OC + BC

→ OC = R - 9

Now, join AD and CD.

In ∆ADC, which is a right angled triangle.

\sf{\angle{ADC}} = 90°

In ∆AOD and ∆DOC

→ OD = OD (common)

\sf{\angle{O}} = \sf{\angle{O}} = 90°

\sf{\angle{ADO}} = \sf{\angle{DCO}}

So, ∆AOD ~ ∆DOC

\therefore\:\sf{\dfrac{OA}{OD}} = \sf{\dfrac{OD}{OC}}

\implies\:\sf{OD^2} = \sf{OA\:\times\:OC}

\implies\:\sf{(R\:-\:5)^2} = \sf{R(R\:-\:9)}

\implies\:\sf{R^2\:+\:25\:-\:10R} = \sf{R^2\:-\:9R}

\implies\:\sf{10R\:-\:9R} = \sf{25}

\implies\:\sf{R} = \sf{25}

Now,

AB = OA + OB

→ AB = 25 + 25

→ AB = 50

So,

→ AC = 50 - 9

→ AC = 41

So, radius = \sf{\dfrac{41}{2}}

•°• Area of shaded region = Area of bigger circle - Area of smaller circle.

→ πR² - πr²

→ π(R² - r²)

\sf{\dfrac{22}{7}\bigg[(25)^2\:-\:\bigg(\dfrac{41}{2}\bigg)^2\bigg]}

\sf{\dfrac{22}{7}\bigg(625\:-\:\dfrac{1681}{4}\bigg)}

\sf{\dfrac{22}{7}\bigg(\dfrac{2500\:-\:1681}{4}\bigg)}

\sf{\dfrac{1287}{2}}

\sf{643.5\:cm^2}

Attachments:

BrainlyConqueror0901: well explained :D
Anonymous: thank you :D
Answered by TheStormWrecker
73

\huge\tt\blue{Answer}

Let R be the bigger radius.

________________________________________________

→OE = OD + ED

→OD = R - 5

________________________________________________

→OB = OC + BC

→OC = R - 9

________________________________________________

Joining AD with CD

∆ ADC = 90°

________________________________________________

→∆ AOD, ∆ DOE

→OD = OD

→∠O = ∠O = 90°

→∠ADO = ∠DCO

________________________________________________

∆ AOD = ∠ DCO

→OA / OD = OD / OC

________________________________________________

→OD² = OA × DC

→(R - 5)² = R (R - 9)

→R² + 25 - 10R = R² - 9R

10R - 9R = 25

→R = 25

________________________________________________

→AB = OA + OB

→AB = 25 + 25

→AB = 50

________________________________________________

→AC = 50 - 9

→AC = 41

→41 / 2 = R

________________________________________________

→π R² - π r²

→π (R² / r²)

→22 / 7 { ( 25)² - ( 41 / 2 )² }

→22 / 7 ( 625 - 1681 / 4 )

→1287 / 2

→643.5 cm²

Attachments:

Anonymous: 10R - 9R (not K)
Similar questions