Math, asked by aswinachu15, 1 year ago

in the given figure,O is the centre of the circle. determine angle APC,if DC and DC are tangents and angle ADC=50 degree.(5marks).

Attachments:

Answers

Answered by Anonymous
365

\huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

Given :

 \sf{ \angle{ADC} =  {50}^{ \circ} } \\   \sf{ad \: and \: dc \: are \: tangents}

__________________

To Find :

 \sf{To \: find \:  \angle{APC}}

__________________

Solution :

Join AO and CO , To form a quadrilateral AOCD.

As, Tangent of a circle are perpendicular to the radius at point of contact.

So,

 \sf{ \angle{DAO =  \angle{DCO} =  {90}^{ \circ} }}

Now, in quadrilateral AOCD

 \sf{ \angle{D} + \angle{A} + \angle{O} +\angle{C}  =  {360}^{ \circ} } \\  \\  \sf{ {50}^{ \circ}  +  {90}^{ \circ} + \angle{O}  + {90}^{ \circ} =  {360}^{ \circ}   } \\  \\  \sf{ {230}^{ \circ} + \angle{O}  =  {360}^{ \circ} } \\  \\  \sf{\angle{O} =  {360}^{ \circ}  -  {230}^{ \circ} } \\  \\  \sf{\angle{O} =  {130}^{ \circ} }

\rule{200}{2}

Now,

By using "Central Angle Theorem"

 \sf{\angle{APC} =  \frac{ {360}^{ \circ} - \angle{O} }{2} } \\  \\  \sf{\angle{APC} =  \frac{ {360}^{ \circ}  -  {130}^{ \circ} }{2} } \\  \\  \sf{\angle{APC} =  \frac{ { \cancel{230}}^{ \circ} }{ \cancel2} } \\  \\  { \LARGE{ \boxed{ \orange{\sf{\angle{APC} =  {115}^{ \circ}}}}}}

Attachments:
Answered by pdhanush3150
1

Answer:

We know, the angle between tangent and radius at the point of contact is a right angle.

               ∴∠OAD=∠OCD=90

               Applying angle sum property in quadrilateral OADC, we get,

               ⇒∠OAD+∠ADC+∠OCD+∠AOC=360

               ⇒90

+50

+90

+∠AOC=360

               ⇒230

+∠AOC=360

               ⇒∠AOC=130

Step 3: Find the required value using suitable property.

               Now, Reflex ∠AOC=360

−130

                                                     =230

               We know, angle subtended at remaining part of a circle is half of the angle subtended at centre.

               ∴∠APC=

2

1

 ∠AOC

                                 =

2

1

×230

                                 =115

Hence, the required measure is 115

Similar questions