Math, asked by Anonymous, 6 months ago

In the given Figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray Lying between rays OP and OR. Prove that

Angle ROS = 1/2 ( angle QOS - angle POS)​

Attachments:

Answers

Answered by lensleopard458
5

Step-by-step explanation:

∠ROS=90∘−∠POS−(i)

∠QOS=∠QOR+∠ROS=90∘+∠ROS

⇒90∘=∠QOS−∠ROS−(ii)

Substituting (ii) in (i) we get

∠ROS=∠QOS−∠ROS−∠POS

⇒2∠ROS=∠QOS−∠POS

⇒∠ROS=21(∠QOS−∠POS)

have a wonderful day ahead

Answered by ItsMysteriousMoon
6

\bold{\textbf{\textsf{{\color{cyan}{Answer \: name \: yaad \: nhi \: tha \: 0..0}}}}}

∠ROS=90°-POS-(i)

∠QOS=∠QOR+∠ROS=90°+/ROS

90⁰ = ∠QOS -∠ROS (ii)

Substituting (ii) in (i) we get

∠ROS =∠QOS -∠ROS -∠POS

2∠ROS =∠QOS - ∠POS

∠ROS = 21(∠QOS - ∠POS)

Similar questions