In the given Figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray Lying between rays OP and OR. Prove that
Angle ROS = 1/2 ( angle QOS - angle POS)
Attachments:
Answers
Answered by
5
Step-by-step explanation:
∠ROS=90∘−∠POS−(i)
∠QOS=∠QOR+∠ROS=90∘+∠ROS
⇒90∘=∠QOS−∠ROS−(ii)
Substituting (ii) in (i) we get
∠ROS=∠QOS−∠ROS−∠POS
⇒2∠ROS=∠QOS−∠POS
⇒∠ROS=21(∠QOS−∠POS)
have a wonderful day ahead
Answered by
6
∠ROS=90°-POS-(i)
∠QOS=∠QOR+∠ROS=90°+/ROS
90⁰ = ∠QOS -∠ROS (ii)
Substituting (ii) in (i) we get
∠ROS =∠QOS -∠ROS -∠POS
2∠ROS =∠QOS - ∠POS
∠ROS = 21(∠QOS - ∠POS)
Similar questions