In the given figure, PQ || RS, ZAEF = 95°.
BHS = 110° and ABC=xº. Find the value of x

Answers
Answer:
BHS=110°
BHG=180°-BHS
=180°-110°
=70°
AEF=95°
EGH=AEF [ALTERNATIVE INTERIOR ANGLES]
=95°
BGH=180°EGH
=180°-95°
=85°
A/q, HGB+GHB+GBH=180°[ANGLE SUM PROPERTY]
=> 85°+70°+x°=180°
=> 155°+x°=180°
=> x°=180°-155°
=> x°=25°
Step-by-step explanation:
Given :
From Fig. 8.129, PQ || RS, ∠AEF = 95°, ∠BHS = 110° and ∠ABC = x°.
To find :
Then the value of x.
Solution :
∠AEF = ∠AGH = 95° (Corresponding angles)
∠AGH + ∠HGB = 180° (Linear pair)
95° + ∠HGB = 180°
∠HGB = 180° - 95°
∠HGB = 85°
∠BHS + ∠BHG = 180° (Linear pair)
110° + ∠BHG = 180°
∠BHG = 180° - 110°
∠BHG = 70°
In ∆BHG,
∠BHG + ∠HGB + ∠GBH = 180°
[By angle sum property]
70° + 85° + ∠GBH = 180°
155° + ∠GBH = 180°
∠GBH = 180° - 155°
∠GBH = 25°
Now,
∠ABC = ∠GBH = 25°
∠ABC = x° = 25°.
Hence, the value of x is 25°.