In the given figure, PR > PQ and PS bisects angle QRP. Prove that angle PSR > angle PSQ.
Answers
⏩ In ∆ PQR, we have
PR > PQ (Given)
angle PQR > angle PRQ
(Since, angle opposite to the larger side is greater)
Therefore,
angle PQR + angle 1 > angle PRQ + angle 1
(Adding angle 1 on both sides)
angle PQR + angle 1 > angle PRQ + angle 2 ....→ (i)
(Since, PS is the bisector of angle P , therefore, angle 1 = angle 2)
Now,
In ∆PQS and ∆PSR, we have,
angle PRQ + angle 1 + angle PSQ = 180° (Angle sum property of a triangle)
and
angle PRQ + angle 2 + angle PSR = 180°
angle PQR + angle 1 = 180° - angle PSQ ...→ (ii)
and
angle PRQ + angle 2 = 180° - angle PSR ...→ (iii)
→ Substitute (ii) and (iii) in eq. (i)
since,. 180° - angle PSQ > 180° - angle PSR
=> - angle PSQ > - angle PSR
=> angle PSQ < angle PSR
or
angle PSR > angle PSQ
_____❗ Hence Proved ❗_____
✔✔✔✔✔✔✔✔✔
Hope it helps...:-)
⭐❤✨♥⭐❤✨♥⭐
Be Brainly...✌✌✌
♣ WALKER ♠