Chemistry, asked by FadedKudi, 10 months ago

in the given figure, the sides ab and AC of of triangle ABC are produced to points p and D respectively. If the bisector BO and CO of angle CBE and angle BCD respectively meet at point O, then prove that angle BOC = 90°-1/2 angle ​

Attachments:

Answers

Answered by JanviMalhan
114

Solution:-

 \sf{ray \: BO \: is \: the \: bisector \: of \angle \: CBE}

 \therefore  \angle \: CBO \:  =  \frac{1}{2}  \angle \:CBE  \\

 =  \frac{1}{2} (180 \degree - y) \\   \\  = 90 \degree \:  -  \frac{y}{2} ...........(1) \\  \\

Similarly , Ray CO is the bisector of

 \angle \: BCD \:  \\  \\  \therefore  \:  \: \angle \: BCO =  \frac{1}{2} (180 \degree - z) \\  \\  = 90 \degree \:  -  \frac{z}{2}

 \rm{ \: in \triangle \: BOC \: } \\  \\  \angle \: BOC +  \angle \: BCO  +  \angle \: CBO = 180 \degree \\

Substituting (1) and (2) in (3), we get ,

 \angle BOC \:  + 90 \degree -  \frac{z}{2}  + 90 \degree -  \frac{y}{2}  = 180 \degree \\  \\

 \angle \: BOC =  \frac{z}{2} +  \frac{y}{2}   \\  \\  \angle \: BOC =  \frac{1}{2} (y + z) \\  \\ x + y + z = 180 \degree \\  \\ y + z = 180 \degree - x \\  \\  \\  \rm{therefore \: (4) \: becomes} \\  \\  \angle \:BOC \:  =  \frac{1}{2}  (180 \degree - x) \\  \\  = 90 \degree -  \frac{x}{2}  \\  \\  = 90 \degree -  \frac{1}{2}  \angle \: BAC \:

Answered by Avni2348
0

Answer:

90 -  \frac{1}{2}  \angle \: bac

Similar questions