Physics, asked by himmat91, 1 year ago

In the relation, F = a + bx, where F is for
and x is distance. Calculate the dimensions
a and b.
[Ans, a = [M' L'T'], b = [M' L'I?​

Answers

Answered by pizzalover
40

Answer: see your answer carefully

By dimensional analysis we consider both the LHS and RHS have the same dimensions.

F=a+bx

In the given equation the LHS is F which stands for force

[F] = [MLT^-2 ]

now in RHS we have two constants a & b , by additive property we find that a and F will have the same dimension .

Thus [a] = [ MLT^ -2]

Now for…. bx , we know x is distance so it has dimension x= [ L ]

Thus we get bx = [ MLT ^-2]

=> b[ L ]= [ MLT ^-2]

=>. b= [ MT ^-2]

a= [MLT ^-2 ] & b=[MT ^-2 ]

Explanation:

Answered by muskanc918
48

\large{\sf{\pink{\underline{\underline{Answer:-}}}}}

\rm{Dimension\;of\;a=[MLT^{-2}]}

\rm{Dimension\;of\;b=[M^{1}L^{0}T^{-2}]}

\large{\sf{\pink{\underline{\underline{Explanation:-}}}}}

\rm{Given\;relation,\;F=a+bx}

\rm{Since\;a\;is\;connected\;by\;addition\;symbol\;so\;a\;has\;dimension\;same\;as\;F.}

\rm{[F]=[a]=[MLT^{-2}]}

\rm{Let\;[b]=[M^{x}L^{y}T^{z}]}

\rm{Again\;bx\;has\;dimension\;of\;F.}

\rm{So,\;[F]=[b][x]}

\rm{\implies [MLT^{-2}]=[M^{x}L^{y}T^{z}][L]}

\rm{\implies [MLT^{-2}]=[M^{x}L^{y+1}T^{z}]}

\rm{Comparing\;the\;powers\;of\;M,L\;and\;T}

\rm{x=1}

\rm{y+1=1}

\rm{\implies y = 0}

\rm{z=-2}

\rm{So,[b]=[M^{x}L^{y}T^{z}]=[M^{1}L^{0}T{-2}]}

\rm{[b]=[M^{1}L^{0}T^{-2}]}

Similar questions