Math, asked by mcravi762, 9 months ago

In the triangle ABC AB=AC. side BC is produced to D and AE is perpendicular to BC. prove that AD square -AC square =BC. CD ​

Answers

Answered by MaheswariS
1

\textbf{Pythagors theorem:}

\text{In a right angled square on the hypotenuse is equal}

\text{to sum of the squares on the other two sides.}

\textbf{Given:}

\text{In isoceles $\triangle$ABC, AB=AC}

\textbf{To prove:}

AD^2-AC^2=BD.CD

\text{Since AE$\perp$BC, BE=EC}.....(1)

\text{In right $\triangle$AED, apply pythagoras theorem}

AD^2=AE^2+ED^2 ........(2)

\text{In right $\triangle$AEC, apply pythagoras theorem}

AC^2=AE^2+EC^2 ........(3)

\text{(2)-(3) gives}

AD^2-AC^2=(AE^2+ED^2)-(AE^2+EC^2)

AD^2-AC^2=ED^2-EC^2

\text{Using}

\boxed{\bf\,a^2-b^2=(a+b)(a-b)}

AD^2-AC^2=(ED+EC)(ED-EC)

AD^2-AC^2=(ED+EC)(CD)

AD^2-AC^2=(ED+BE)(CD) (Using (1))

\implies\boxed{\bf\,AD^2-AC^2=(BD)(CD)}

Attachments:
Similar questions