Math, asked by abhishek21012007, 7 months ago

in the triangle abc angle abc equal to 60 degree and angle ACB = 45 degree and BC = 10 cm find the altitude ad of the triangle​

Attachments:

Answers

Answered by MissSizzling
20

Step-by-step explanation:

Let the perpendicular be CD on AB.

In triangle ADC

tan60=CD/AD = 3^1/2

CD = AD*3^1/2 ………………..(1)

tan45 = CD/BD = 1

CD = BD ………………(2)

From (1) and (2)

we get AD*3^1/2 = BD

and AD + BD = 10cm

so AD(3^1/2 + 1) = 10cm

AD = 5(3^1/2 -1)

AD = 5*0.732 = 3.66cm

CD = AD*3^1/2

CD = 3.66*1.732 = 6.33912cm

hope it's help u ‼️✌️✌️

Answered by amitnrw
2

Given : In the ∆ABC , ∠ABC= 60° , ∠ACB =45° and BC=10cm

To find :  the altitude AD of the triangle.

Solution:

AD  is altitude Hence ΔABD and ΔACD are right angle triangles

D lies on BC

∠ABC= 60° => ∠ABD = 60°      and ∠ACD = ∠ACB = 45°

in ΔACD

Tan 45°  = AD / CD

=> 1 = AD/CD

=> CD = AD

in ΔABD

Tan 60°  = AD / BD

=> √3 = AD/BD

=> BD = AD/√3

CD + BD  = 10 cm

=> AD  +  AD/√3 = 10

=> AD  √3 +  AD = 10√3

=> AD = 10√3 / ( √3 + 1)

=> AD  = 10 √ 3 (√3 - 1) / (3 - 1)

=> AD  = 10   (3 - √3 ) / (2)

=> AD = 5 (3 - √3 )

=> AD ≈ 6.34 cm

the altitude AD of the triangle is  5 (3 - √3 )  cm   ≈ 6.34 cm

Learn More:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ

brainly.in/question/10480120

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Similar questions