Math, asked by prabhavpavan968, 1 year ago

In the triangle PQR angle Q is an right angle.PQ is 12cm and PR is 13cm.we have to find value of tanP-cotR

Answers

Answered by MaheswariS
10

\textbf{Given:}

\text{In right angled $\triangle$PQR, PQ=12 cm and PR=13 cm}

\textbf{To find:}

tan\,P-cot\,R

\textbf{Solution:}

\text{In right angled $\triangle$PQR, by Pythagoras theorem}

\text{we get}

PR^2=PQ^2+QR^2

13^2=12^2+QR^2

169=QR^2+144

\implies\,QR^2=25

\implies\,QR=5

\text{Consider,}

tan\,P=\dfrac{QR}{PQ}

\implies\bf\,tan\,P=\dfrac{5}{12}

cot\,R=\dfrac{QR}{PQ}

\implies\bf\,cot\,R=\dfrac{5}{12}

\text{Now,}

tan\,P-cot\,R

=\dfrac{5}{12}-\dfrac{5}{12}

=0

\therefore\textbf{The value of tan\,P-cot\,R is 0}

Find more:

If triangle ABC And right angle at c then the value of cosec(A +B)

https://brainly.in/question/14007163

Answered by SyndicateX
0

Answer:

hi

Step-by-step explanation:

Similar questions