In trapezium ABCD, AB||CD
Attachments:
Answers
Answered by
22
In trapezium ABCD
AB||CD
AB=1/3 (CD)
IN TRIANGLE AOB & TRIANGLE COD
ANGLE ABO= ANGLE CDO
(ALTERNATE INTERIOR ANGLE)
ANGLE BAO= ANGLE DCO (SAME)
ANGLE AOB= ANGLE COD
(VERTICALLY OPPOSITE ANGLE)
SO TRIANGLE AOB IS CONGRUENT TO TRIANGLE COD
(AREA AOB)/(AREA COD)= (AB^2)/(CD^2)
21/ COD = (AB)^2/9AB^2
21/COD= AB^2/9AB^2
21/COD=1/9
AREA TRIANGLE COD =21×9= 189CM^2
AB||CD
AB=1/3 (CD)
IN TRIANGLE AOB & TRIANGLE COD
ANGLE ABO= ANGLE CDO
(ALTERNATE INTERIOR ANGLE)
ANGLE BAO= ANGLE DCO (SAME)
ANGLE AOB= ANGLE COD
(VERTICALLY OPPOSITE ANGLE)
SO TRIANGLE AOB IS CONGRUENT TO TRIANGLE COD
(AREA AOB)/(AREA COD)= (AB^2)/(CD^2)
21/ COD = (AB)^2/9AB^2
21/COD= AB^2/9AB^2
21/COD=1/9
AREA TRIANGLE COD =21×9= 189CM^2
PADMA4712:
thnxx frnd
Answered by
5
Answer:
Step-by-step explanation:
AB||CD
AB=1/3 (CD)
IN TRIANGLE AOB & TRIANGLE COD
ANGLE ABO= ANGLE CDO
(ALTERNATE INTERIOR ANGLE)
ANGLE BAO= ANGLE DCO (SAME)
ANGLE AOB= ANGLE COD
(VERTICALLY OPPOSITE ANGLE)
SO TRIANGLE AOB IS CONGRUENT TO TRIANGLE COD
(AREA AOB)/(AREA COD)= (AB^2)/(CD^2)
21/ COD = (AB)^2/9AB^2
21/COD= AB^2/9AB^2
21/COD=1/9
AREA TRIANGLE COD =21×9= 189CM^2
Similar questions