In tri. ABC, angle B > angle C. If AM is the bisector of angle ABC and AN perpendicular to BC. prove that angle MAN =½(angle B - angle C)
Attachments:
Answers
Answered by
3
Step-by-step explanation:
B)
In ΔABC, since AE bisects ∠A,
then ∠BAE = ∠CAE................(1)
In ΔADC,
∠ADC+∠DAC+∠ACD = 180° [Angle sum property]
⇒90° + ∠DAC + ∠C = 180°
⇒∠C = 90°−∠DAC...................(2)
In ΔADB,
∠ADB+∠DAB+∠ABD = 180° [Angle sum property]
⇒90° + ∠DAB + ∠B = 180°
⇒∠B = 90°−∠DAB....................(3)
Subtracting (3) from (2), we get
∠C − ∠B =∠DAB − ∠DAC
⇒∠C − ∠B =[∠BAE+∠DAE] − [∠CAE−∠DAE]
⇒∠C − ∠B =∠BAE+∠DAE − ∠BAE+∠DAE [As, ∠BAE = ∠CAE ]
⇒∠C − ∠B =2∠DAE
⇒∠DAE = 1/2(∠C − ∠B) PROVED
Similar questions