IN triangle abc ab+bc =2ac angle A = C+90 find the value of 100 cos b
Answers
Answer:
ans is 45
Step-by-step explanation:
Concept
Properties of Triangle
Given
In a triangle abc , ab+bc =2ac and angle A = C+90 '
Find
The value of 100 cos b
Solution
a+c = 2b. .. (1)
We know A+B+C=180 (angle sum property of triangle)
90+C+ B+C = 180
B+2C = 90
B = 90–2C, A = 90+C
Some relations between sides and angles,
- a/ cosC = b / cos 2C = c / sin C
- b/a = 2 cos^2C —1 / cos C, c/a = tan C
- b/a = 2 cos C — sec C, a = c cot C
Using in 1 i.e. a+c = 2b
c cot C + c = cCot C ( 2 cos C — secC)
1 + cot C = 2 cos^2 C / sin C — cosec C
sin C + cos C / sin C = 1/sin C ( cos 2C).
sin C + cos C = cos 2C
sinC+ cosC=2coscsinC
sinC+CosC-2sinCcosC=0
let sinC=t; then
sqrt (1-t^2) = 1–2t^2 -t
1 - 5t^2 = (1-t)^2 —4 (1-t)t^2
1–5t^2 = 1+t^2 -2t -4t^2 +4t^3
4t^3 + 2t^2 -2t = 0
2t^2 +t —1 = 0
t = —1 +— sqrt (1 +8) /4
t= —1+—3/4
t= —1, 1/2
sinC=-1 or C=-180 or sinC =1/2 or C=30°
C = 30°, A = 120°, B = 30°
cosB=cos30°= √3/2 ,
Hence,
100 cos B = 50√3
The value of 100 cos b is equal to 50√3
#SPJ3