in triangle abc and external bisector of angle BCA and ABC meet each other at o then find the measure of angle Boc
Answers
Answered by
1
ANSWER:
- ∠ABO=∠OBC=∠ABC2
∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2
∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,
∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BAC
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)In△BOC,
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)In△BOC,∠ABC2+∠ACB2+∠BOC=180∘
∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)In△BOC,∠ABC2+∠ACB2+∠BOC=180∘⟹∠ABC+∠ACB2+∠BOC=180∘
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)In△BOC,∠ABC2+∠ACB2+∠BOC=180∘⟹∠ABC+∠ACB2+∠BOC=180∘⟹∠BOC=180∘−∠ABC+∠ACB2
∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)In△BOC,∠ABC2+∠ACB2+∠BOC=180∘⟹∠ABC+∠ACB2+∠BOC=180∘⟹∠BOC=180∘−∠ABC+∠ACB2From(1),
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)In△BOC,∠ABC2+∠ACB2+∠BOC=180∘⟹∠ABC+∠ACB2+∠BOC=180∘⟹∠BOC=180∘−∠ABC+∠ACB2From(1),⟹∠BOC=180∘−[90∘−∠BAC2]
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)In△BOC,∠ABC2+∠ACB2+∠BOC=180∘⟹∠ABC+∠ACB2+∠BOC=180∘⟹∠BOC=180∘−∠ABC+∠ACB2From(1),⟹∠BOC=180∘−[90∘−∠BAC2]⟹∠BOC=180∘−90∘+∠BAC2
- ∠ABO=∠OBC=∠ABC2∠ACO=∠OCB=∠ACB2In△ABC,∠ABC+∠ACB+∠BAC=180∘⟹∠ABC+∠ACB=180∘−∠BACDividingbothsidesby2,⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)In△BOC,∠ABC2+∠ACB2+∠BOC=180∘⟹∠ABC+∠ACB2+∠BOC=180∘⟹∠BOC=180∘−∠ABC+∠ACB2From(1),⟹∠BOC=180∘−[90∘−∠BAC2]⟹∠BOC=180∘−90∘+∠BAC2⟹∠BOC=90∘+∠BAC2
Similar questions