In triangle ABC,angle A =2 times angle B.Prove that BC2 =AC2 +AC.AB.
Answers
Given :-
- ∠A = 2 . ∠B
To Prove :-
- BC² =AC² +AC.AB
Formula used :-
if sides opposite to ∠A, ∠B, ∠C be a,b,c respectively.
Than,
By sine rule :- a/(Sin A)= b/(Sin B)= c/(Sin C)
and,
By cosine rule :-
- cos B = ( a² + c² - b² / 2ac )
Solution :-
From sin rule : -
→ BC/sin A = AC/Sin B
Given that, ∠A = 2 . ∠B
So,
→ BC/sin.2B = AC/Sin B
using , sin2@ = [email protected]@ we get,
→ BC / (2 * sin B * cos B) = AC/Sin B
→ BC / 2.cos B = AC
→ cos B = BC/2.AC -------------- Eqn.(1)
From Cosine rule :-
→ cos B = (AB² + BC² - AC²)/ (2.AB.BC) ------ Eqn.(2)
Comparing Both Equations Now, we get,
→ BC/2.AC = (AB² + BC² - AC²)/ (2.AB.BC)
→ 2.AB.BC² = 2.AC(AB² + BC² - AC²)
→ AB.BC² = AC.AB² + AC.BC² - AC³
→ AB.BC² - AC.BC² = AC.AB² - AC³
→ BC²(AB - AC) = AC(AB² - AC²)
using (x² - y²) = (x + y)(x - y) in RHS now,
→ BC²(AB - AC) = AC (AB + AC)(AB - AC)
→ BC² = AC(AB + AC)
→ BC² = AC.AB + AC²
→ BC² =AC² + AC.AB (Proved).
Answer:
Given :
- ∆ ABC
- Let us assume that,
- ∠A = 2x
- ∠B = x
To Prove :
BC ² = AC²+AB×AC
Construction:
CX is perpendicular to AB
and also construct,
CD = CA ...........(1)
Proof :
∠A = ∠D = 2X
In ∆CDB,
Exterior ∠2x = ∠B + ∠C
→∠B = ∠BCD = X
→CD = DB ........(2) [ By side opposite to equal angle of a triangle]
From (1) and (2)
AC = DB .........(3)
By Pythagoras theorem of acute triangle,
BC² = AC²+ AB²-2 AB×AX
BC²= AC²+AB (AB -2AX)
BC²= AC²+AB(AB-AD)
BC²= AC²+AB×DB
But in equation (3)
DB = AC
HENCE,
BC²= AC²+AB×AC